메뉴 건너뛰기




Volumn 65, Issue 2, 2006, Pages 305-316

Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks

Author keywords

Disulfide bridges; Metal binding sites; Neural networks; Protein function prediction; Support vector machines

Indexed keywords

CADMIUM; COPPER; CYSTEINE; DISULFIDE; HEME; HISTIDINE; IRON COMPLEX; NICKEL; TRANSITION ELEMENT; ZINC;

EID: 33749036872     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.21135     Document Type: Article
Times cited : (91)

References (53)
  • 3
    • 0033635648 scopus 로고    scopus 로고
    • Bioinorganic motifs: Towards functional classification of metalloproteins
    • Degtyarenko K. Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 2000;16:851-864.
    • (2000) Bioinformatics , vol.16 , pp. 851-864
    • Degtyarenko, K.1
  • 5
    • 0026596929 scopus 로고
    • Three-dimensional solution structure of Ca(2+)-loaded porcine calbindin D9k determined by nuclear magnetic resonance spectroscopy
    • Akke M, Drakenberg T, Chazin WJ. Three-dimensional solution structure of Ca(2+)-loaded porcine calbindin D9k determined by nuclear magnetic resonance spectroscopy. Biochemistry 1992;31:1011-1020.
    • (1992) Biochemistry , vol.31 , pp. 1011-1020
    • Akke, M.1    Drakenberg, T.2    Chazin, W.J.3
  • 7
    • 0001231645 scopus 로고    scopus 로고
    • Transferrin as a metal ion mediator
    • Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev 1999;99:2817-2842.
    • (1999) Chem Rev , vol.99 , pp. 2817-2842
    • Sun, H.1    Li, H.2    Sadler, P.J.3
  • 8
    • 4644355809 scopus 로고    scopus 로고
    • The architecture of metal coordination groups in proteins
    • Harding MM. The architecture of metal coordination groups in proteins. Acta Crystallogr D Biol Crystallogr 2004;60:849-859.
    • (2004) Acta Crystallogr D Biol Crystallogr , vol.60 , pp. 849-859
    • Harding, M.M.1
  • 9
    • 0035726222 scopus 로고    scopus 로고
    • Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage
    • Hertweck M, Mueller MW. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage. Eur J Biochem 2001;268:4610-4620.
    • (2001) Eur J Biochem , vol.268 , pp. 4610-4620
    • Hertweck, M.1    Mueller, M.W.2
  • 10
    • 3142747652 scopus 로고    scopus 로고
    • A hint to search for metalloproteins in gene banks
    • Andreini C, Bertini I, Rosato A. A hint to search for metalloproteins in gene banks. Bioinformatics 2004;20:1373-1380.
    • (2004) Bioinformatics , vol.20 , pp. 1373-1380
    • Andreini, C.1    Bertini, I.2    Rosato, A.3
  • 11
    • 4143139761 scopus 로고    scopus 로고
    • Learning to discriminate between ligand-bound and disulfide-bound cysteines
    • Passerini A, Frasconi P. Learning to discriminate between ligand-bound and disulfide-bound cysteines. Protein Eng Des Sel 2004;17:367-373.
    • (2004) Protein Eng des Sel , vol.17 , pp. 367-373
    • Passerini, A.1    Frasconi, P.2
  • 12
    • 0035471138 scopus 로고    scopus 로고
    • Engineering novel metalloproteins: Design of metal-binding sites into native protein scaffolds
    • Lu Y, Berry SM, Pfister TD. Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. Chem Rev 2001;101:3047-3080.
    • (2001) Chem Rev , vol.101 , pp. 3047-3080
    • Lu, Y.1    Berry, S.M.2    Pfister, T.D.3
  • 13
    • 4143131151 scopus 로고    scopus 로고
    • De novo design of catalytic proteins
    • Kaplan J, DeGrado WF. De novo design of catalytic proteins. Proc Natl Acad Sci USA 2004;101:11566-11570.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 11566-11570
    • Kaplan, J.1    DeGrado, W.F.2
  • 14
    • 3042726394 scopus 로고    scopus 로고
    • Automatic target selection for structural genomics on eukaryotes
    • Liu J, Hegyi H, Acton TB, Montelione GT, Rost B. Automatic target selection for structural genomics on eukaryotes. Proteins 2004;56:188-200.
    • (2004) Proteins , vol.56 , pp. 188-200
    • Liu, J.1    Hegyi, H.2    Acton, T.B.3    Montelione, G.T.4    Rost, B.5
  • 16
    • 0027475029 scopus 로고
    • The prediction and characterization of metal binding sites in proteins
    • Gregory DS, Martin AC, Cheetham JC, Rees AR. The prediction and characterization of metal binding sites in proteins. Protein Eng 1993;6:29-35.
    • (1993) Protein Eng , vol.6 , pp. 29-35
    • Gregory, D.S.1    Martin, A.C.2    Cheetham, J.C.3    Rees, A.R.4
  • 20
    • 33745784560 scopus 로고    scopus 로고
    • Improving prediction of zinc binding sites by modeling the linkage between residues close in sequence
    • Venice, Italy, April 2-5
    • Menchetti S, Passerini A, Frasconi P, Andreini C, Rosato A. Improving prediction of zinc binding sites by modeling the linkage between residues close in sequence. In Proceedings of RE-COMB'06, Venice, Italy, April 2-5, 2006. pp 309-320.
    • (2006) Proceedings of RE-COMB'06 , pp. 309-320
    • Menchetti, S.1    Passerini, A.2    Frasconi, P.3    Andreini, C.4    Rosato, A.5
  • 21
    • 20744446399 scopus 로고    scopus 로고
    • Structure, function, and formation of biological iron-sulfur clusters
    • Johnson DC, Dean DR, Smith AD, Johnson MK. Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 2005;74:247-281.
    • (2005) Annu Rev Biochem , vol.74 , pp. 247-281
    • Johnson, D.C.1    Dean, D.R.2    Smith, A.D.3    Johnson, M.K.4
  • 22
    • 0036260085 scopus 로고    scopus 로고
    • Structure-function relationships in heme-proteins
    • Paoli M, Marles-Wright J, Smith A. Structure-function relationships in heme-proteins. DNA Cell Biol 2002;21:271-280.
    • (2002) DNA Cell Biol , vol.21 , pp. 271-280
    • Paoli, M.1    Marles-Wright, J.2    Smith, A.3
  • 24
    • 2942624211 scopus 로고    scopus 로고
    • Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network
    • Martelli PL, Fariselli P, Casadio R. Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics 2004;4:1665-1671.
    • (2004) Proteomics , vol.4 , pp. 1665-1671
    • Martelli, P.L.1    Fariselli, P.2    Casadio, R.3
  • 25
    • 2542586190 scopus 로고    scopus 로고
    • Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences
    • Chen YC, Lin YS, Lin CJ, Hwang JK. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences. Proteins 2004;55:1036-1042.
    • (2004) Proteins , vol.55 , pp. 1036-1042
    • Chen, Y.C.1    Lin, Y.S.2    Lin, C.J.3    Hwang, J.K.4
  • 26
    • 1942456707 scopus 로고    scopus 로고
    • Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition
    • Song JN, Wang ML, Li WJ, Xu WB. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition. Biochem Biophys Res Commun 2004;318:142-147.
    • (2004) Biochem Biophys Res Commun , vol.318 , pp. 142-147
    • Song, J.N.1    Wang, M.L.2    Li, W.J.3    Xu, W.B.4
  • 27
    • 31944444347 scopus 로고    scopus 로고
    • Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching
    • Cheng J, Saigo H, Baldi P. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching. Proteins 2006;62:617-629.
    • (2006) Proteins , vol.62 , pp. 617-629
    • Cheng, J.1    Saigo, H.2    Baldi, P.3
  • 29
    • 0043122933 scopus 로고    scopus 로고
    • Uniqueprot: Creating sequence-unique protein data sets
    • Mika S, Rost B. Uniqueprot: creating sequence-unique protein data sets. Nucleic Acids Res 2003;31:3789-3791.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3789-3791
    • Mika, S.1    Rost, B.2
  • 30
    • 0032962457 scopus 로고    scopus 로고
    • Twilight zone of protein sequence alignments
    • Rost B. Twilight zone of protein sequence alignments. Protein Eng 1999;12:85-94.
    • (1999) Protein Eng , vol.12 , pp. 85-94
    • Rost, B.1
  • 31
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen- Bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen- bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 32
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V. Support vector networks. Mach Learn 1995;20:1-25.
    • (1995) Mach Learn , vol.20 , pp. 1-25
    • Cortes, C.1    Vapnik, V.2
  • 34
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000;16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 35
    • 0034048878 scopus 로고    scopus 로고
    • A discriminative framework for detecting remote protein homologies
    • Jaakkola T, Diekhans M, Haussler D. A discriminative framework for detecting remote protein homologies. J Comput Biol 2000;7:95-114.
    • (2000) J Comput Biol , vol.7 , pp. 95-114
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 36
    • 16244398103 scopus 로고    scopus 로고
    • Mimicking cellular sorting improves prediction of subcellular localization
    • Nair R, Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 2005;348:85-100.
    • (2005) J Mol Biol , vol.348 , pp. 85-100
    • Nair, R.1    Rost, B.2
  • 37
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu CW, Lin CJ. A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 2002;13:415-425.
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 38
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • Crammer K, Singer Y. On the learnability and design of output codes for multiclass problems. Mach Learn 2002;47:201-233.
    • (2002) Mach Learn , vol.47 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 39
    • 0034039497 scopus 로고    scopus 로고
    • Predicting the oxidation state of cysteines by multiple sequence alignment
    • Fiser A, Simon I. Predicting the oxidation state of cysteines by multiple sequence alignment. Bioinformatics 2000;16:251-256.
    • (2000) Bioinformatics , vol.16 , pp. 251-256
    • Fiser, A.1    Simon, I.2
  • 40
    • 16344373871 scopus 로고    scopus 로고
    • Learning probabilistic models of relational structure
    • Williamstown, MA, USA, June 28-July 1
    • Getoor L, Friedman N, Koller D, Taskar B. Learning probabilistic models of relational structure. In Proceedings of ICML'01, Williamstown, MA, USA, June 28-July 1, 2001. pp 170-177.
    • (2001) Proceedings of ICML'01 , pp. 170-177
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Taskar, B.4
  • 41
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 1999;15:937-946.
    • (1999) Bioinformatics , vol.15 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 42
    • 1842455284 scopus 로고    scopus 로고
    • Bisulfide connectivity prediction using recursive neural networks and evolutionary information
    • Vullo A, Frasconi P. Bisulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics 2004;20:653-659.
    • (2004) Bioinformatics , vol.20 , pp. 653-659
    • Vullo, A.1    Frasconi, P.2
  • 43
    • 19544372994 scopus 로고    scopus 로고
    • Prediction of subcellular localization using sequence-biased recurrent networks
    • Boden M, Hawkins J. Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics 2005;21:2279-2286.
    • (2005) Bioinformatics , vol.21 , pp. 2279-2286
    • Boden, M.1    Hawkins, J.2
  • 44
    • 33747866099 scopus 로고    scopus 로고
    • DISULFIND: A disulfide bonding state and cysteine connectivity prediction server
    • Ceroni A, Passerini A, Vullo A, Frasconi P. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res 2006;34:W177-W181.
    • (2006) Nucleic Acids Res , vol.34
    • Ceroni, A.1    Passerini, A.2    Vullo, A.3    Frasconi, P.4
  • 46
    • 7444267810 scopus 로고    scopus 로고
    • A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction
    • Pisa, Italy, September 23-26
    • Ceroni A, Frasconi P, Passerini A, Vullo A. A combination of support vector machines and bidirectional recurrent neural networks for protein secondary structure prediction. In proceedings of AI*IA'03, Pisa, Italy, September 23-26, 2003. Vol. 2829, pp 142-153.
    • (2003) Proceedings of AI*IA'03 , vol.2829 , pp. 142-153
    • Ceroni, A.1    Frasconi, P.2    Passerini, A.3    Vullo, A.4
  • 47
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley A. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn 1997;30:1145-1159.
    • (1997) Pattern Recogn , vol.30 , pp. 1145-1159
    • Bradley, A.1
  • 48
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve to multiple class classification problems
    • Hand DJ, Till RJ. A simple generalization of the area under the ROC curve to multiple class classification problems. Mach Learn 2001;45:171-186.
    • (2001) Mach Learn , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 49
    • 0001244666 scopus 로고    scopus 로고
    • ScanProsite: A reference implementation of a PROSITE scanning tool
    • Gattiker A, Gasteiger E, Bairoch A. ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 2002;1:107,108.
    • (2002) Appl Bioinformatics , vol.1 , pp. 107
    • Gattiker, A.1    Gasteiger, E.2    Bairoch, A.3
  • 50
    • 0033977325 scopus 로고    scopus 로고
    • Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis
    • Goto JJ, Zhu H, Sanchez RJ, Nersissian A, Gralla EB, Valentine JS, Cabelli DE. Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 2000;275:1007-1014.
    • (2000) J Biol Chem , vol.275 , pp. 1007-1014
    • Goto, J.J.1    Zhu, H.2    Sanchez, R.J.3    Nersissian, A.4    Gralla, E.B.5    Valentine, J.S.6    Cabelli, D.E.7
  • 51
    • 0041761699 scopus 로고    scopus 로고
    • Genomics perspective on disulfide bond formation
    • Fomenko D, Gladyshev V. Genomics perspective on disulfide bond formation. Antioxid Redox Signal 2003;5:397-402.
    • (2003) Antioxid Redox Signal , vol.5 , pp. 397-402
    • Fomenko, D.1    Gladyshev, V.2
  • 52
    • 0032411723 scopus 로고    scopus 로고
    • The genetics of disulfide bond metabolism
    • Rietsch A, Beckwith J. The genetics of disulfide bond metabolism. Annu Rev Genet 1998;32:163-184.
    • (1998) Annu Rev Genet , vol.32 , pp. 163-184
    • Rietsch, A.1    Beckwith, J.2
  • 53
    • 0037083493 scopus 로고    scopus 로고
    • Predicting the disulfide bonding state of cysteines using protein descriptors
    • Mucchielli-Giorgi M, Hazout S, Tuffery P. Predicting the disulfide bonding state of cysteines using protein descriptors. Proteins 2002;46:243-249.
    • (2002) Proteins , vol.46 , pp. 243-249
    • Mucchielli-Giorgi, M.1    Hazout, S.2    Tuffery, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.