메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 270-282

GDTW-P-SVMs: Variable-length time series analysis using support vector machines

Author keywords

Dynamic Time Warping; Sequential data analysis; Support vector machines; Time series classification

Indexed keywords

CLASSIFICATION METHODS; DATA SETS; DISTANCE MEASURE; DYNAMIC TIME WARPING; DYNAMIC TIME WARPING ALGORITHMS; FEATURE VECTORS; GAUSSIANS; INPUT SERIES; KERNEL FUNCTION; KERNEL MATRICES; MAXIMUM MARGIN; POSITIVE DEFINITE; REAL WORLD DATA; SCALE-INVARIANT; SEQUENTIAL DATA ANALYSIS; TEST DATA; TIME SERIES CLASSIFICATIONS; TRAJECTORY DATA; UCI MACHINE LEARNING REPOSITORY;

EID: 84867862095     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.006     Document Type: Article
Times cited : (20)

References (80)
  • 1
    • 84862784752 scopus 로고    scopus 로고
    • A novel text mining approach to financial time series forecasting
    • Wang B., Huang H., Wang X. A novel text mining approach to financial time series forecasting. Neurocomputing 2012, 83(1):136-145.
    • (2012) Neurocomputing , vol.83 , Issue.1 , pp. 136-145
    • Wang, B.1    Huang, H.2    Wang, X.3
  • 3
    • 70349464843 scopus 로고    scopus 로고
    • Forecasting model of global stock index by stochastic time effective neural network
    • Liao Z., Wang J. Forecasting model of global stock index by stochastic time effective neural network. Expert Syst. Appl. 2010, 37(1):834-841.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 834-841
    • Liao, Z.1    Wang, J.2
  • 4
    • 57849164537 scopus 로고    scopus 로고
    • Pedestrian detection from a moving camera with an advanced camera-motion estimator
    • IEEE Computer Society, Washington, DC, USA, K. Yetongnon, R. Chbeir, A. Dipanda (Eds.)
    • Jalalian A., Fathy M. Pedestrian detection from a moving camera with an advanced camera-motion estimator. 3rd International IEEE Conference on Signal-Image Technologies and Internet-based System 2007, 965-971. IEEE Computer Society, Washington, DC, USA. K. Yetongnon, R. Chbeir, A. Dipanda (Eds.).
    • (2007) 3rd International IEEE Conference on Signal-Image Technologies and Internet-based System , pp. 965-971
    • Jalalian, A.1    Fathy, M.2
  • 5
    • 77951252732 scopus 로고    scopus 로고
    • Infrared gait recognition based on wavelet transform and support vector machine
    • Xue Z., Ming D., Song W., Wan B., Jin S. Infrared gait recognition based on wavelet transform and support vector machine. Pattern Recognition 2010, 43(8):2904-2910.
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2904-2910
    • Xue, Z.1    Ming, D.2    Song, W.3    Wan, B.4    Jin, S.5
  • 6
    • 77950391073 scopus 로고    scopus 로고
    • Spatially adaptive mixture modeling for analysis of FMRI time series
    • Vincent T., Risser L., Ciuciu P. Spatially adaptive mixture modeling for analysis of FMRI time series. IEEE Trans. Med. Imaging 2010, 29(4):1059-1074.
    • (2010) IEEE Trans. Med. Imaging , vol.29 , Issue.4 , pp. 1059-1074
    • Vincent, T.1    Risser, L.2    Ciuciu, P.3
  • 7
    • 70449724614 scopus 로고    scopus 로고
    • Sequential non-stationary dynamic classification with sparse feedback
    • Lowne D.R., Roberts S.J., Garnett R. Sequential non-stationary dynamic classification with sparse feedback. Pattern Recognition 2010, 43(3):897-905.
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 897-905
    • Lowne, D.R.1    Roberts, S.J.2    Garnett, R.3
  • 8
    • 10844292588 scopus 로고    scopus 로고
    • A mutual information kernel for sequences
    • Proceedings,, IEEE Computer Society, Washington, DC, USA, 2004
    • M. Cuturi, J.-P. Vert, A mutual information kernel for sequences, in: 2004 IEEE International Joint Conference on Neural Networks, 2004. Proceedings, vol. 3, IEEE Computer Society, Washington, DC, USA, 2004, pp. 1905-1910.
    • (2004) In: 2004 IEEE International Joint Conference on Neural Networks , vol.3 , pp. 1905-1910
    • Cuturi, M.1    Vert, J.-P.2
  • 10
    • 79960911469 scopus 로고    scopus 로고
    • Agent-agent interaction as a component of agent-environment interaction in the modelling and analysis of pedestrian visual behaviour
    • Newcastle, Australia, C.M. Herr, N. Gu, S. Roudavski, M.A. Schnabel (Eds.)
    • Jalalian A., Chalup S.K., Ostwald M.J. Agent-agent interaction as a component of agent-environment interaction in the modelling and analysis of pedestrian visual behaviour. The 16th International Conference of the Association for Computer-Aided Architectural Design Research in Asia 2011, 555-564. Newcastle, Australia. C.M. Herr, N. Gu, S. Roudavski, M.A. Schnabel (Eds.).
    • (2011) The 16th International Conference of the Association for Computer-Aided Architectural Design Research in Asia , pp. 555-564
    • Jalalian, A.1    Chalup, S.K.2    Ostwald, M.J.3
  • 11
    • 84865072609 scopus 로고    scopus 로고
    • Simulating pedestrian flow dynamics for evaluating the design of urban and architectural space
    • Unitec Institute of Technology, Auckland, New Zealand, C. Murphy, S.J. Wake, D. Turner, G. McConchie, D. Rhodes (Eds.)
    • Jalalian A., Chalup S.K., Ostwald M.J. Simulating pedestrian flow dynamics for evaluating the design of urban and architectural space. 44th Annual Conference of the Architectural Science Association, ANZAScA 2010 2010, Unitec Institute of Technology, Auckland, New Zealand. C. Murphy, S.J. Wake, D. Turner, G. McConchie, D. Rhodes (Eds.).
    • (2010) 44th Annual Conference of the Architectural Science Association, ANZAScA 2010
    • Jalalian, A.1    Chalup, S.K.2    Ostwald, M.J.3
  • 12
    • 79960915190 scopus 로고    scopus 로고
    • Architectural evaluation of simulated pedestrian spatial behaviour
    • Jalalian A., Chalup S.K., Ostwald M.J. Architectural evaluation of simulated pedestrian spatial behaviour. Archit. Sci. Rev. 2011, 54(2):132-140.
    • (2011) Archit. Sci. Rev. , vol.54 , Issue.2 , pp. 132-140
    • Jalalian, A.1    Chalup, S.K.2    Ostwald, M.J.3
  • 13
    • 55849096272 scopus 로고    scopus 로고
    • An unsupervised network anomaly detection approach by k-means clustering and id3 algorithms
    • IEEE Computer Society, Washington, DC, USA
    • Y. Yasami, S. Khosravi, S. Pour Mozaffari, A. Jalalian, An unsupervised network anomaly detection approach by k-means clustering and id3 algorithms, in: Symposium on Computers and Communications, IEEE Computer Society, Washington, DC, USA, 2008, pp. 398-403.
    • (2008) In: Symposium on Computers and Communications , pp. 398-403
    • Yasami, Y.1    Khosravi, S.2    Pour Mozaffari, S.3    Jalalian, A.4
  • 16
    • 32344434787 scopus 로고    scopus 로고
    • Identifying representative trends in massive time series data sets using sketches
    • Morgan Kaufmann Publishers, Inc, San Francisco, CA, USA, A.E. Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, K.-Y. Whang (Eds.)
    • Indyk P., Koudas N., Muthukrishnan S. Identifying representative trends in massive time series data sets using sketches. Proceedings of the 26th International Conference on Very Large Data Bases (VLDB'00) 2000, 363-372. Morgan Kaufmann Publishers, Inc, San Francisco, CA, USA. A.E. Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, K.-Y. Whang (Eds.).
    • (2000) Proceedings of the 26th International Conference on Very Large Data Bases (VLDB'00) , pp. 363-372
    • Indyk, P.1    Koudas, N.2    Muthukrishnan, S.3
  • 17
    • 78149299418 scopus 로고    scopus 로고
    • Distance measures for effective clustering of arima time-series
    • IEEE Computer Society, Washington, DC, USA, N. Cercone, T.Y. Lin, X. Wu (Eds.)
    • Kalpakis K., Gada D., Vasundhara P. Distance measures for effective clustering of arima time-series. Proceedings of the 2001 IEEE International Conference on Data Mining 2001, 273-280. IEEE Computer Society, Washington, DC, USA. N. Cercone, T.Y. Lin, X. Wu (Eds.).
    • (2001) Proceedings of the 2001 IEEE International Conference on Data Mining , pp. 273-280
    • Kalpakis, K.1    Gada, D.2    Vasundhara, P.3
  • 18
    • 62249218289 scopus 로고    scopus 로고
    • Time warp edit distance with stiffness adjustment for time series matching
    • Marteau P.-F. Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(2):306-318.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.2 , pp. 306-318
    • Marteau, P.-F.1
  • 20
    • 84950242370 scopus 로고
    • Methods of Mathematical Physics, first english edition,, Interscience Publishers, New York, USA, (translated and revised from the German original).
    • R. Courant, D. Hilbert, Methods of Mathematical Physics, first english edition, vol. 1, Interscience Publishers, New York, USA, 1937 (translated and revised from the German original).
    • (1937) , vol.1
    • Courant, R.1    Hilbert, D.2
  • 22
    • 0001678047 scopus 로고
    • Longest common subsequences of two random sequences
    • Chvatal V., Sankoff D. Longest common subsequences of two random sequences. J. Appl. Probab. 1975, 12(2):306-315.
    • (1975) J. Appl. Probab. , vol.12 , Issue.2 , pp. 306-315
    • Chvatal, V.1    Sankoff, D.2
  • 23
    • 85135872226 scopus 로고    scopus 로고
    • On the marriage of lp-norms and edit distance
    • Morgan Kaufmann Publishers, San Francisco, CA, USA, M.A. Nascimento, M.T. Ozsu, D. Kossmann, J. Miller, B. Schiefer (Eds.)
    • Chen L., Raymond N. On the marriage of lp-norms and edit distance. Proceedings of the 30th Very Large Databases (VLDB) Conference 2004, 792-803. Morgan Kaufmann Publishers, San Francisco, CA, USA. M.A. Nascimento, M.T. Ozsu, D. Kossmann, J. Miller, B. Schiefer (Eds.).
    • (2004) Proceedings of the 30th Very Large Databases (VLDB) Conference , pp. 792-803
    • Chen, L.1    Raymond, N.2
  • 24
    • 79957533818 scopus 로고    scopus 로고
    • Weighted dynamic time warping for time series classification
    • Jeong Y.-S., Jeong M.K., Omitaomud O.A. Weighted dynamic time warping for time series classification. Pattern Recognition 2011, 44(9):2231-2240.
    • (2011) Pattern Recognition , vol.44 , Issue.9 , pp. 2231-2240
    • Jeong, Y.-S.1    Jeong, M.K.2    Omitaomud, O.A.3
  • 25
    • 35248838963 scopus 로고    scopus 로고
    • Derivative dynamic time warping
    • SIAM, Philadelphia, PA, USA, R. Grossman, V. Kumar, J. Han (Eds.)
    • Keogh E.J., Pazzani M.J. Derivative dynamic time warping. First SIAM International Conference on Data Mining 2001, 1-11. SIAM, Philadelphia, PA, USA. R. Grossman, V. Kumar, J. Han (Eds.).
    • (2001) First SIAM International Conference on Data Mining , pp. 1-11
    • Keogh, E.J.1    Pazzani, M.J.2
  • 26
    • 34250727441 scopus 로고    scopus 로고
    • Three myths about dynamic time warping data mining, in: Proceedings of the 2005 SIAM International Conference on Data Mining
    • C.A. Ratanamahatana, E. Keogh, Three myths about dynamic time warping data mining, in: Proceedings of the 2005 SIAM International Conference on Data Mining, 2005, pp. 506-510.
    • (2005) , pp. 506-510
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 29
    • 53949085995 scopus 로고    scopus 로고
    • Supporting content-based searches on time series via approximation
    • IEEE Computer Society, Washington, DC, USA, O. Gunther, H.J. Lenz (Eds.)
    • Wang C., Wang X.S. Supporting content-based searches on time series via approximation. The 12th International Conference on Scientific and Statistical Database Management 2000, 69-81. IEEE Computer Society, Washington, DC, USA. O. Gunther, H.J. Lenz (Eds.).
    • (2000) The 12th International Conference on Scientific and Statistical Database Management , pp. 69-81
    • Wang, C.1    Wang, X.S.2
  • 30
    • 78049352590 scopus 로고    scopus 로고
    • Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification
    • Orsenigo C., Vercellis C. Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification. Pattern Recognition 2010, 43(11):3787-3794.
    • (2010) Pattern Recognition , vol.43 , Issue.11 , pp. 3787-3794
    • Orsenigo, C.1    Vercellis, C.2
  • 31
    • 70449526103 scopus 로고    scopus 로고
    • A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams
    • Wöllmer M., Al-Hames M., Eyben F., Schuller B., Rigoll G. A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams. Neurocomputing 2009, 73(1):366-380.
    • (2009) Neurocomputing , vol.73 , Issue.1 , pp. 366-380
    • Wöllmer, M.1    Al-Hames, M.2    Eyben, F.3    Schuller, B.4    Rigoll, G.5
  • 32
    • 77249091669 scopus 로고    scopus 로고
    • Using dynamic time warping of t0 contours in the evaluation of cycle-to-cycle pitch detection algorithms
    • Ferrer C., Torres D., Hernández-Díaz M.E. Using dynamic time warping of t0 contours in the evaluation of cycle-to-cycle pitch detection algorithms. Pattern Recognition Lett. 2011, 31(6):517-522.
    • (2011) Pattern Recognition Lett. , vol.31 , Issue.6 , pp. 517-522
    • Ferrer, C.1    Torres, D.2    Hernández-Díaz, M.E.3
  • 34
    • 78751530702 scopus 로고    scopus 로고
    • Gesture recognition with inertial sensors and optimized DTW prototypes
    • IEEE Computer Society, Washington, DC, USA
    • B. Hartmann, N. Link, Gesture recognition with inertial sensors and optimized DTW prototypes, in: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), IEEE Computer Society, Washington, DC, USA, 2010, pp. 2102-2109.
    • (2010) In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC) , pp. 2102-2109
    • Hartmann, B.1    Link, N.2
  • 35
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • Shawe-Taylor J., Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011, 74(17):3609-3618.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 38
    • 67349086151 scopus 로고    scopus 로고
    • Incremental support vector machine learning in the primal and applications
    • Liang Z., Li Y. Incremental support vector machine learning in the primal and applications. Neurocomputing 2009, 72(10):2249-2258.
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2249-2258
    • Liang, Z.1    Li, Y.2
  • 40
    • 84867869174 scopus 로고    scopus 로고
    • A. d'Aspremont, Support Vector Machine Classification with Indefinite Kernels, Computing Research Repository, CoRR abs/0804.0188
    • R. Luss, A. d'Aspremont, Support Vector Machine Classification with Indefinite Kernels, Computing Research Repository, CoRR abs/0804.0188, 2009, pp. 1-8.
    • (2009) , pp. 1-8
    • Luss, R.1
  • 41
    • 0345978977 scopus 로고    scopus 로고
    • Covariance kernels from Bayesian generative models
    • The MIT Press, Cambridge, MA, USA
    • Seeger M. Covariance kernels from Bayesian generative models. Neural Information Processing Systems 2000, vol. 14:905-912. The MIT Press, Cambridge, MA, USA.
    • (2000) Neural Information Processing Systems , vol.14 , pp. 905-912
    • Seeger, M.1
  • 43
    • 0003713964 scopus 로고
    • Nonlinear programming, in: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, USA
    • H.W. Kuhn, A.W. Tucker, Nonlinear programming, in: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, USA, 1951, pp. 481-492.
    • (1951) , pp. 481-492
    • Kuhn, H.W.1    Tucker, A.W.2
  • 45
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • Containing Papers of a Mathematical or Physical Character
    • Mercer J. Functions of positive and negative type, and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A 1909, 209:415-446. Containing Papers of a Mathematical or Physical Character.
    • (1909) Philos. Trans. R. Soc. Lond. Ser. A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 47
    • 33751033588 scopus 로고    scopus 로고
    • Optimizing resources in model selection for support vector machine
    • Adankon M.M., Cheriet M. Optimizing resources in model selection for support vector machine. Pattern Recognition 2007, 40(3):953-963.
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 953-963
    • Adankon, M.M.1    Cheriet, M.2
  • 49
    • 33646875697 scopus 로고    scopus 로고
    • Support vector machines for dyadic data
    • Hochreiter S., Obermayer K. Support vector machines for dyadic data. Neural Comput. 2006, 18(6):1472-1510.
    • (2006) Neural Comput. , vol.18 , Issue.6 , pp. 1472-1510
    • Hochreiter, S.1    Obermayer, K.2
  • 50
    • 84968492782 scopus 로고
    • Metric spaces and positive definite functions
    • Schoenberg I.J. Metric spaces and positive definite functions. Trans. Am. Math. Soc. 1938, 44(3):522-536.
    • (1938) Trans. Am. Math. Soc. , vol.44 , Issue.3 , pp. 522-536
    • Schoenberg, I.J.1
  • 51
    • 84893499976 scopus 로고    scopus 로고
    • On-line handwriting recognition with support vector machines-a kernel approach
    • IEEE Computer Society, Washington, DC, USA, A.D. Williams (Ed.)
    • Bahlmann C., Haasdonk B., Burkhardt H. On-line handwriting recognition with support vector machines-a kernel approach. The 8th International Workshop on Frontiers in Handwriting (IWFHR'02) 2002, 49-54. IEEE Computer Society, Washington, DC, USA. A.D. Williams (Ed.).
    • (2002) The 8th International Workshop on Frontiers in Handwriting (IWFHR'02) , pp. 49-54
    • Bahlmann, C.1    Haasdonk, B.2    Burkhardt, H.3
  • 53
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • Sakoe H., Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 1978, 26(1):43-49.
    • (1978) IEEE Trans. Acoust. Speech Signal Process. , vol.26 , Issue.1 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 54
    • 57949105059 scopus 로고    scopus 로고
    • A study on the dynamic time warping in kernel machines
    • IEEE Computer Society, Washington, DC, USA, K. Yetongnon, R. Chbeir, A. Dipanda (Eds.)
    • Lei H., Sun B. A study on the dynamic time warping in kernel machines. Signal-image Technologies and Internet-based Systems 2007, 839-845. IEEE Computer Society, Washington, DC, USA. K. Yetongnon, R. Chbeir, A. Dipanda (Eds.).
    • (2007) Signal-image Technologies and Internet-based Systems , pp. 839-845
    • Lei, H.1    Sun, B.2
  • 57
    • 56349096866 scopus 로고    scopus 로고
    • Support vector machines and dynamic time warping for time series
    • (IJCNN 2008) (IEEE World Congress on Computational Intelligence), IEEE Computer Society, Washington, DC, USA, 2008
    • S. Gudmundsson, T. Runarsson, S. Sigurdsson, Support vector machines and dynamic time warping for time series, in: IEEE International Joint Conference on Neural Networks, 2008 (IJCNN 2008) (IEEE World Congress on Computational Intelligence), IEEE Computer Society, Washington, DC, USA, 2008, pp. 2772-2776.
    • (2008) In: IEEE International Joint Conference on Neural Networks , pp. 2772-2776
    • Gudmundsson, S.1    Runarsson, T.2    Sigurdsson, S.3
  • 58
    • 84867851284 scopus 로고    scopus 로고
    • The UCR Time Series Classification/Clustering Data Sets Homepage
    • E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, C.A. Ratanamahatana, The UCR Time Series Classification/Clustering Data Sets Homepage, 2011. http://www.cs.ucr.edu/~eamonn/time_series_data/.
    • (2011)
    • Keogh, E.1    Zhu, Q.2    Hu, B.3    Hao, Y.4    Xi, X.5    Wei, L.6    Ratanamahatana, C.A.7
  • 59
    • 84867852749 scopus 로고    scopus 로고
    • The UCI Machine Learning Repository
    • A. Frank, A. Asuncion, The UCI Machine Learning Repository, 2011. http://archive.ics.uci.edu/ml.
    • (2011)
    • Frank, A.1    Asuncion, A.2
  • 61
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers. pitfalls to avoid and a recommended approach
    • Salzberg S. On comparing classifiers. pitfalls to avoid and a recommended approach. Data Min. Knowl. Discovery 1997, 1(3):317-327.
    • (1997) Data Min. Knowl. Discovery , vol.1 , Issue.3 , pp. 317-327
    • Salzberg, S.1
  • 62
    • 1642452775 scopus 로고
    • Machine learning as an experimental science
    • Langley P. Machine learning as an experimental science. Mach. Learn. 1988, 3(1):5-8.
    • (1988) Mach. Learn. , vol.3 , Issue.1 , pp. 5-8
    • Langley, P.1
  • 63
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM. a library for support vector machines
    • Software available at
    • Chang C.-C., Lin C.-J. LIBSVM. a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2(3):27:1-27:27. Software available at 〈http://www.csie.ntu.edu.tw/~cjlin/libsvm〉.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 64
    • 41749090269 scopus 로고    scopus 로고
    • Toward accurate dynamic time warping in linear time and space
    • Salvador S., Chan P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11(5):561-580.
    • (2007) Intell. Data Anal. , vol.11 , Issue.5 , pp. 561-580
    • Salvador, S.1    Chan, P.2
  • 65
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and activate learning
    • Bordes A., Ertekin S., Weston J., Bottou L. Fast kernel classifiers with online and activate learning. J. Mach. Learn. Res. 2005, 6:1579-1619.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 66
    • 0037844872 scopus 로고    scopus 로고
    • Classification in a normalized feature space using support vector machines
    • Graf A.B.A., Smola A.J., Borer S. Classification in a normalized feature space using support vector machines. IEEE Trans. Neural Networks 2003, 14(3):597-605.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.3 , pp. 597-605
    • Graf, A.B.A.1    Smola, A.J.2    Borer, S.3
  • 68
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • SIAM, Philadelphia, PA, USA, M.W. Berry, U. Dayal, C. Kamath, D. Skillicorn (Eds.)
    • Ratanamahatana C.A., Keogh E. Making time-series classification more accurate using learned constraints. Proceedings of the 4th SIAM International Conference on Data Mining 2004, 11-22. SIAM, Philadelphia, PA, USA. M.W. Berry, U. Dayal, C. Kamath, D. Skillicorn (Eds.).
    • (2004) Proceedings of the 4th SIAM International Conference on Data Mining , pp. 11-22
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 69
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Lett. 2006, 27:861-874.
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 71
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Statist. Assoc. 1937, 32(200):675-701.
    • (1937) J. Am. Statist. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 72
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • Dunn O.J. Multiple comparisons among means. J. Am. Statist. Assoc. 1961, 56(293):52-64.
    • (1961) J. Am. Statist. Assoc. , vol.56 , Issue.293 , pp. 52-64
    • Dunn, O.J.1
  • 73
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 75
    • 78449245352 scopus 로고    scopus 로고
    • Geolife. a collaborative social networking service among user, location and trajectory
    • Zheng Y., Xie X., Ma W.-Y. Geolife. a collaborative social networking service among user, location and trajectory. IEEE Database Eng. Bull. 2010, 33(2):32-39.
    • (2010) IEEE Database Eng. Bull. , vol.33 , Issue.2 , pp. 32-39
    • Zheng, Y.1    Xie, X.2    Ma, W.-Y.3
  • 77
    • 80053444073 scopus 로고    scopus 로고
    • Learning discriminative fisher kernels
    • Bellevue, WA, USA, only online version was available at the time of preparing this paper.
    • L.v.d. Maaten, Learning discriminative fisher kernels, in: Proceedings of 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011, only online version was available at the time of preparing this paper. http://www.icml-2011.org/papers/178_icmlpaper.pdf.
    • (2011) In: Proceedings of 28th International Conference on Machine Learning
    • Maaten, L.V.D.1
  • 80
    • 84867873062 scopus 로고    scopus 로고
    • Segment-based SVMs for Time Series Analysis, Ph.D. Thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
    • M.H. Nguyen, Segment-based SVMs for Time Series Analysis, Ph.D. Thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2012.
    • (2012)
    • Nguyen, M.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.