메뉴 건너뛰기




Volumn 52, Issue 10, 2012, Pages 2494-2500

Note on naive bayes based on binary descriptors in cheminformatics

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; CLASSIFIERS;

EID: 84867812799     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci200303m     Document Type: Article
Times cited : (7)

References (20)
  • 5
    • 79960707576 scopus 로고    scopus 로고
    • Classifying Molecules Using a Sparse Probabilistic Kernel Binary Classifier
    • Lowe, R.; Mussa, H. Y.; Mitchell, J. D.; Glen, R. C. Classifying Molecules Using a Sparse Probabilistic Kernel Binary Classifier J. Chem. Inf. Model. 2011, 51, 1539-1544
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1539-1544
    • Lowe, R.1    Mussa, H.Y.2    Mitchell, J.D.3    Glen, R.C.4
  • 8
    • 79952614063 scopus 로고    scopus 로고
    • New Fragment Weighting Scheme for the Bayesian Inference Network in Ligand-Based Virtual Screening
    • Abdo, A.; Salim, N. New Fragment Weighting Scheme for the Bayesian Inference Network in Ligand-Based Virtual Screening J. Chem. Inf. Model. 2011, 51, 25-32
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 25-32
    • Abdo, A.1    Salim, N.2
  • 9
    • 66849121861 scopus 로고    scopus 로고
    • Bayesian Modeling in Virtual High Throughput Screening
    • Klon, A. E. Bayesian Modeling in Virtual High Throughput Screening Comb. Chem. High Throughput Screen. 2009, 12, 469-483
    • (2009) Comb. Chem. High Throughput Screen. , vol.12 , pp. 469-483
    • Klon, A.E.1
  • 10
    • 79952117092 scopus 로고    scopus 로고
    • Bayesian Methods in Virtual Screening and Chemical Biology
    • Bender, A. Bayesian Methods in Virtual Screening and Chemical Biology Methods Mol. Biol. 2011, 672, 175-196
    • (2011) Methods Mol. Biol. , vol.672 , pp. 175-196
    • Bender, A.1
  • 11
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E. On estimation of a probability density function and mode Ann. Math. Stat. 1962, 33, 1065-1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 12
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. An introduction to ROC analysis Patt. Rec. Lett. 2006, 27, 861-874
    • (2006) Patt. Rec. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 14
    • 10244222365 scopus 로고    scopus 로고
    • Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures
    • Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures Org. Biomol. Chem. 2004, 2, 3256-3266
    • (2004) Org. Biomol. Chem. , vol.2 , pp. 3256-3266
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 15
    • 41549125090 scopus 로고    scopus 로고
    • How to winnow actives from inactives: Introducing Molecular Orthogonal Sparse Bigrams (MOSBs) and multi-class winnow
    • Nigsch, F.; Mitchell, J. B. O. How to winnow actives from inactives: Introducing Molecular Orthogonal Sparse Bigrams (MOSBs) and multi-class winnow J. Chem. Inf. Model. 2008, 48, 306-318
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 306-318
    • Nigsch, F.1    Mitchell, J.B.O.2
  • 16
    • 34247386376 scopus 로고    scopus 로고
    • Support vector inductive logic programming outperforms the naive Bayes classiïňA̧er and inductive logic programming for the classiïňA̧cation of bioactive chemical compounds
    • Cannon, E. O.; Amin, A.; Bender, A.; Sternberg, M. J. E.; Muggleton, S. H.; Glen, R. C.; Mitchell, J. B. O. Support vector inductive logic programming outperforms the naive Bayes classiïňA̧er and inductive logic programming for the classiïňA̧cation of bioactive chemical compounds J. Comput.-Aided Mol. Des. 2007, 21, 269-280
    • (2007) J. Comput.-Aided Mol. Des. , vol.21 , pp. 269-280
    • Cannon, E.O.1    Amin, A.2    Bender, A.3    Sternberg, M.J.E.4    Muggleton, S.H.5    Glen, R.C.6    Mitchell, J.B.O.7
  • 18
    • 0342645331 scopus 로고    scopus 로고
    • version.10; Chemical Computing Group Inc. Montreal, Canada H3A 2RT, 2009.
    • MOE (The Molecular Operating Environment), version 2009.10; Chemical Computing Group Inc.: Montreal, Canada H3A 2RT, 2009.
    • (2009) MOE (The Molecular Operating Environment)
  • 19
    • 0017109036 scopus 로고
    • Multivariate binary discrimination by the kernel method
    • Aitchison, J.; Aitken, C. G. G. Multivariate binary discrimination by the kernel method Biometrika 1976, 63, 413-420
    • (1976) Biometrika , vol.63 , pp. 413-420
    • Aitchison, J.1    Aitken, C.G.G.2
  • 20
    • 84867822592 scopus 로고    scopus 로고
    • The Aitchison - Aitken discrete kernel function is after all a positive definite kernel. Statistics and Probability Letters (in revision).
    • Mussa, H. Y. The Aitchison-Aitken discrete kernel function is after all a positive definite kernel. Statistics and Probability Letters (in revision).
    • Mussa, H.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.