메뉴 건너뛰기




Volumn 42, Issue 11, 2012, Pages 1053-1059

Prediction of flavin mono-nucleotide binding sites using modified PSSM profile and ensemble support vector machine

Author keywords

Binding site prediction; Ensemble classifier; Flavin mono nucleotide (FMN); Position specific score matrix (PSSM); Support vector machine (SVM)

Indexed keywords

AMINO ACID SEQUENCE; BIOLOGICAL PROCESS; DATA SETS; ENSEMBLE CLASSIFIERS; FLAVIN MONO-NUCLEOTIDE (FMN); IMBALANCED DATA; POSITION SPECIFIC SCORE MATRIX (PSSM);

EID: 84867727889     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2012.08.005     Document Type: Article
Times cited : (9)

References (65)
  • 1
    • 33646052300 scopus 로고    scopus 로고
    • Native-specific stabilization of flavodoxin by the FMN cofactor: structural and thermodynamical explanation
    • Campos L., Sancho J. Native-specific stabilization of flavodoxin by the FMN cofactor: structural and thermodynamical explanation. Proteins 2006, 63:581-594.
    • (2006) Proteins , vol.63 , pp. 581-594
    • Campos, L.1    Sancho, J.2
  • 2
    • 0030976268 scopus 로고    scopus 로고
    • Bovine kidney low molecular weight acid phosphatase: FMN-dependent kinetics
    • Granjeiro J.M., Ferreira C.V., Jucfi M.B., Taga E.M., Aoyama H. Bovine kidney low molecular weight acid phosphatase: FMN-dependent kinetics. IUBMB Life 1997, 41:1201-1208.
    • (1997) IUBMB Life , vol.41 , pp. 1201-1208
    • Granjeiro, J.M.1    Ferreira, C.V.2    Jucfi, M.B.3    Taga, E.M.4    Aoyama, H.5
  • 6
    • 52249097805 scopus 로고    scopus 로고
    • Highly accurate method for ligand-binding site prediction in unbound state (apo) protein structures
    • Morita M., Nakamura S., Shimizu K. Highly accurate method for ligand-binding site prediction in unbound state (apo) protein structures. Proteins 2008, 73:468-479.
    • (2008) Proteins , vol.73 , pp. 468-479
    • Morita, M.1    Nakamura, S.2    Shimizu, K.3
  • 7
    • 31544440473 scopus 로고    scopus 로고
    • An empirical approach for detecting nucleotide-binding sites on proteins
    • Saito M., Go M., Shirai T. An empirical approach for detecting nucleotide-binding sites on proteins. Protein Eng. Des. Sel. 2006, 19:67-75.
    • (2006) Protein Eng. Des. Sel. , vol.19 , pp. 67-75
    • Saito, M.1    Go, M.2    Shirai, T.3
  • 8
    • 78649913479 scopus 로고    scopus 로고
    • Discovering rules for protein-ligand specificity using support vector inductive logic programming
    • Kelley L.A., Shrimpton P.J., Muggleton S.H., Sternberg M.J.E. Discovering rules for protein-ligand specificity using support vector inductive logic programming. Protein Eng. Des. Sel. 2009, 22:561-567.
    • (2009) Protein Eng. Des. Sel. , vol.22 , pp. 561-567
    • Kelley, L.A.1    Shrimpton, P.J.2    Muggleton, S.H.3    Sternberg, M.J.E.4
  • 9
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • T. Dietterich, Ensemble methods in machine learning, Lecture Notes in Computer Science. vol. 1857, 2000, pp. 1-15.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 11
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition
    • Chou K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273:236-247.
    • (2011) J. Theor. Biol. , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 16
    • 3242792729 scopus 로고    scopus 로고
    • Structural bioinformatics and its impact to biomedical science
    • Chou K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem. 2004, 11:2105-2134.
    • (2004) Curr. Med. Chem. , vol.11 , pp. 2105-2134
    • Chou, K.C.1
  • 17
    • 0028904113 scopus 로고
    • The convergence-divergence duality in lectin domains of selectin family and its implications
    • Chou K.C. The convergence-divergence duality in lectin domains of selectin family and its implications. FEBS Lett. 1995, 363:123-126.
    • (1995) FEBS Lett. , vol.363 , pp. 123-126
    • Chou, K.C.1
  • 19
    • 25444524842 scopus 로고    scopus 로고
    • PSSM-based prediction of DNA binding sites in proteins
    • Ahmad S., Sarai A. PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics 2005, 6:33.
    • (2005) BMC Bioinformatics , vol.6 , pp. 33
    • Ahmad, S.1    Sarai, A.2
  • 20
    • 77950471248 scopus 로고    scopus 로고
    • Identification of ATP binding residues of a protein from its primary sequence
    • Chauhan J., Mishra N., Raghava G. Identification of ATP binding residues of a protein from its primary sequence. BMC Bioinformatics 2009, 10:434.
    • (2009) BMC Bioinformatics , vol.10 , pp. 434
    • Chauhan, J.1    Mishra, N.2    Raghava, G.3
  • 21
    • 78751591450 scopus 로고    scopus 로고
    • Identification of RNA-binding sites in proteins by integrating various sequence information
    • Wang C., Fang Y., Xiao J., Li M. Identification of RNA-binding sites in proteins by integrating various sequence information. Amino acids 2010, 40:1-10.
    • (2010) Amino acids , vol.40 , pp. 1-10
    • Wang, C.1    Fang, Y.2    Xiao, J.3    Li, M.4
  • 22
  • 23
    • 77956263332 scopus 로고    scopus 로고
    • Prediction of lipid-binding sites based on support vector machine and position specific scoring matrix
    • Xiong W., Guo Y., Li M. Prediction of lipid-binding sites based on support vector machine and position specific scoring matrix. Protein J. 2010, 29:1-5.
    • (2010) Protein J. , vol.29 , pp. 1-5
    • Xiong, W.1    Guo, Y.2    Li, M.3
  • 24
    • 57649181721 scopus 로고    scopus 로고
    • Predicting RNA-binding sites of proteins using support vector machines and evolutionary information
    • Cheng C.W., Su E., Hwang J.K., Sung T.Y., Hsu W.L. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinformatics 2008, 9:S6.
    • (2008) BMC Bioinformatics , vol.9
    • Cheng, C.W.1    Su, E.2    Hwang, J.K.3    Sung, T.Y.4    Hsu, W.L.5
  • 25
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins: Structure
    • Chou K.C. Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins: Structure. Funct. Bioinformatics 2001, 43:246-255.
    • (2001) Funct. Bioinformatics , vol.43 , pp. 246-255
    • Chou, K.C.1
  • 26
    • 75149112324 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction sites using an ensemble method
    • Deng L., Guan J., Dong Q., Zhou S. Prediction of protein-protein interaction sites using an ensemble method. BMC Bioinformatics 2009, 10:426.
    • (2009) BMC Bioinformatics , vol.10 , pp. 426
    • Deng, L.1    Guan, J.2    Dong, Q.3    Zhou, S.4
  • 27
    • 45449094954 scopus 로고    scopus 로고
    • Predicting n-terminal acetylation based on feature selection method
    • Cai Y.D., Lu L. Predicting n-terminal acetylation based on feature selection method. Biochem. Biophys. Res. Commun. 2008, 372:862-865.
    • (2008) Biochem. Biophys. Res. Commun. , vol.372 , pp. 862-865
    • Cai, Y.D.1    Lu, L.2
  • 28
    • 75149173507 scopus 로고    scopus 로고
    • Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information
    • Mishra N., Raghava G. Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information. BMC Bioinformatics 2010, 11:S48.
    • (2010) BMC Bioinformatics , vol.11
    • Mishra, N.1    Raghava, G.2
  • 29
    • 0024046665 scopus 로고
    • Cluster analysis of amino acid indices for prediction of protein structure and function
    • Nakai K., Kidera A., Kanehisa M. Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng. Des. Sel. 1988, 2:93-100.
    • (1988) Protein Eng. Des. Sel. , vol.2 , pp. 93-100
    • Nakai, K.1    Kidera, A.2    Kanehisa, M.3
  • 30
    • 0029922443 scopus 로고    scopus 로고
    • Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins
    • Tomii K., Kanehisa M. Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng. Des. Sel. 1996, 9:27-36.
    • (1996) Protein Eng. Des. Sel. , vol.9 , pp. 27-36
    • Tomii, K.1    Kanehisa, M.2
  • 33
    • 78149461454 scopus 로고    scopus 로고
    • N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites
    • Lee T.Y., Hsu J.B.K., Lin F.M., Chang W.C., Hsu P.C., Huang H.D. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites. J. Comput. Chem. 2010, 31.
    • (2010) J. Comput. Chem. , vol.31
    • Lee, T.Y.1    Hsu, J.B.K.2    Lin, F.M.3    Chang, W.C.4    Hsu, P.C.5    Huang, H.D.6
  • 34
    • 32144432097 scopus 로고    scopus 로고
    • A classification approach for power distribution systems fault cause identification
    • Xu L., Chow M.Y. A classification approach for power distribution systems fault cause identification. IEEE Trans. Power Syst. 2006, 21:53-60.
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 53-60
    • Xu, L.1    Chow, M.Y.2
  • 35
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.H., Liu X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 18:63-77.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2
  • 36
    • 45849098303 scopus 로고    scopus 로고
    • An information granulation based data mining approach for classifying imbalanced data
    • Chen M.C., Chen L.S., Hsu C.C., Zeng W.R. An information granulation based data mining approach for classifying imbalanced data. Inf. Sci. (NY) 2008, 178:3214-3227.
    • (2008) Inf. Sci. (NY) , vol.178 , pp. 3214-3227
    • Chen, M.C.1    Chen, L.S.2    Hsu, C.C.3    Zeng, W.R.4
  • 38
    • 84878026694 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines, Software available at
    • C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 39
    • 76749171194 scopus 로고    scopus 로고
    • Prediction of the parallel/antiparallel orientation of beta-strands using amino acid pairing preferences and support vector machines
    • Zhang N., Duan G., Gao S., Ruan J., Zhang T. Prediction of the parallel/antiparallel orientation of beta-strands using amino acid pairing preferences and support vector machines. J. Theor. Biol. 2010, 263:360-368.
    • (2010) J. Theor. Biol. , vol.263 , pp. 360-368
    • Zhang, N.1    Duan, G.2    Gao, S.3    Ruan, J.4    Zhang, T.5
  • 40
    • 61549096128 scopus 로고    scopus 로고
    • Prediction of protein secondary structure content by using the concept of chous pseudo amino acid composition and support vector machine
    • Chen C., Chen L., Zou X., Cai P. Prediction of protein secondary structure content by using the concept of chous pseudo amino acid composition and support vector machine. Protein Pept. Lett. 2009, 16:27-31.
    • (2009) Protein Pept. Lett. , vol.16 , pp. 27-31
    • Chen, C.1    Chen, L.2    Zou, X.3    Cai, P.4
  • 41
    • 79955564229 scopus 로고    scopus 로고
    • A. Esmaeili, Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
    • H. Mohabatkar, M. Mohammad Beigi, A. Esmaeili, Prediction of GABAA receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine, J. Theor. Biol. (2011).
    • (2011) J. Theor. Biol.
    • Mohabatkar, H.1    Mohammad Beigi, M.2
  • 42
    • 34548439881 scopus 로고    scopus 로고
    • Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes
    • Zhou X.B., Chen C., Li Z.C., Zou X.Y. Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J. Theor. Biol. 2007, 248:546-551.
    • (2007) J. Theor. Biol. , vol.248 , pp. 546-551
    • Zhou, X.B.1    Chen, C.2    Li, Z.C.3    Zou, X.Y.4
  • 43
    • 77955964484 scopus 로고    scopus 로고
    • Using the concept of chous pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform
    • Qiu J.D., Huang J.H., Shi S.P., Liang R.P. Using the concept of chous pseudo amino acid composition to predict enzyme family classes: an approach with support vector machine based on discrete wavelet transform. Protein Pept. Lett. 2010, 17:715-722.
    • (2010) Protein Pept. Lett. , vol.17 , pp. 715-722
    • Qiu, J.D.1    Huang, J.H.2    Shi, S.P.3    Liang, R.P.4
  • 44
    • 0038636605 scopus 로고    scopus 로고
    • Support vector machines for predicting membrane protein types by using functional domain composition
    • Cai Y.D., Zhou G.P., Chou K.C. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys. J. 2003, 84:3257-3263.
    • (2003) Biophys. J. , vol.84 , pp. 3257-3263
    • Cai, Y.D.1    Zhou, G.P.2    Chou, K.C.3
  • 45
    • 34548606295 scopus 로고    scopus 로고
    • Recent progress in protein subcellular location prediction
    • Chou K.C., Shen H.B. Recent progress in protein subcellular location prediction. Anal. Biochem. 2007, 370:1-16.
    • (2007) Anal. Biochem. , vol.370 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 46
    • 77649234126 scopus 로고    scopus 로고
    • Lysine acetylation sites prediction using an ensemble of support vector machine classifiers
    • Xu Y., Wang X.B., Ding J., Wu L.Y., Deng N.Y. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. J. Theor. Biol. 2010, 264:130-135.
    • (2010) J. Theor. Biol. , vol.264 , pp. 130-135
    • Xu, Y.1    Wang, X.B.2    Ding, J.3    Wu, L.Y.4    Deng, N.Y.5
  • 47
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen H.B., Chou K.C. Ensemble classifier for protein fold pattern recognition. Bioinformatics 2006, 22:1717-1722.
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 48
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., Gabrys B. Classifier selection for majority voting. Inf. fusion 2005, 6:63-81.
    • (2005) Inf. fusion , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 50
    • 80052414830 scopus 로고    scopus 로고
    • Evolutionary-based selection of generalized instances for imbalanced classification
    • Garcia S., Derrac J., Triguero I., Carmona C.J., Herrera F. Evolutionary-based selection of generalized instances for imbalanced classification. Knowl. Based Syst. 2012, 25:3-12.
    • (2012) Knowl. Based Syst. , vol.25 , pp. 3-12
    • Garcia, S.1    Derrac, J.2    Triguero, I.3    Carmona, C.J.4    Herrera, F.5
  • 53
    • 77649337793 scopus 로고    scopus 로고
    • Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses
    • Esmaeili M., Mohabatkar H., Mohsenzadeh S. Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses. J. Theor. Biol. 2010, 263:203-209.
    • (2010) J. Theor. Biol. , vol.263 , pp. 203-209
    • Esmaeili, M.1    Mohabatkar, H.2    Mohsenzadeh, S.3
  • 54
    • 84863345053 scopus 로고    scopus 로고
    • Dual-layer wavelet SVM for predicting protein structural class via the general form of chous pseudo amino acid composition
    • Chen C., Shen Z.B., Zou X.Y. Dual-layer wavelet SVM for predicting protein structural class via the general form of chous pseudo amino acid composition. Protein Pept. Lett. 2012, 19:422-429.
    • (2012) Protein Pept. Lett. , vol.19 , pp. 422-429
    • Chen, C.1    Shen, Z.B.2    Zou, X.Y.3
  • 55
    • 84855641685 scopus 로고    scopus 로고
    • ILoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou K.C., Wu Z.C., Xiao X. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. BioSyst. 2012, 8:629-641.
    • (2012) Mol. BioSyst. , vol.8 , pp. 629-641
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 56
    • 84858255890 scopus 로고    scopus 로고
    • Loc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins
    • Wu Z.C., Xiao X., Chou K.C. Loc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins. Protein Pept. Lett. 2012, 19:4-14.
    • (2012) Protein Pept. Lett. , vol.19 , pp. 4-14
    • Wu, Z.C.1    Xiao, X.2    Chou, K.C.3
  • 57
    • 79953316878 scopus 로고    scopus 로고
    • ILoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
    • Chou K.C., Wu Z.C., Xiao X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE 2011, 6:e18258.
    • (2011) PLoS ONE , vol.6
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 58
    • 84858833657 scopus 로고    scopus 로고
    • Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chous PseAAC
    • Hayat M., Khan A. Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chous PseAAC. Protein Pept. Lett. 2012, 19:411-421.
    • (2012) Protein Pept. Lett. , vol.19 , pp. 411-421
    • Hayat, M.1    Khan, A.2
  • 60
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Lett. 2006, 27:861-874.
    • (2006) Pattern Recognition Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 61
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30:1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 62
    • 77954181419 scopus 로고    scopus 로고
    • Predicting post-translational lysine acetylation using support vector machines
    • Gnad F., Ren S., Choudhary C., Cox J., Mann M. Predicting post-translational lysine acetylation using support vector machines. Bioinformatics 2010, 26:1666-1668.
    • (2010) Bioinformatics , vol.26 , pp. 1666-1668
    • Gnad, F.1    Ren, S.2    Choudhary, C.3    Cox, J.4    Mann, M.5
  • 63
    • 16344366696 scopus 로고    scopus 로고
    • NetAcet: prediction of N-terminal acetylation sites
    • Kiemer L., Bendtsen J.D., Blom N. NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 2005, 21:1269-1270.
    • (2005) Bioinformatics , vol.21 , pp. 1269-1270
    • Kiemer, L.1    Bendtsen, J.D.2    Blom, N.3
  • 64
    • 24644498713 scopus 로고    scopus 로고
    • A novel method for N-terminal acetylation prediction
    • Liu Y., Lin Y. A novel method for N-terminal acetylation prediction. Genomics Proteomics Bioinformatics 2004, 2:253-255.
    • (2004) Genomics Proteomics Bioinformatics , vol.2 , pp. 253-255
    • Liu, Y.1    Lin, Y.2
  • 65
    • 77649339280 scopus 로고    scopus 로고
    • Review: recent advances in developing web-servers for predicting protein attributes
    • Chou K.C., Shen H.B. Review: recent advances in developing web-servers for predicting protein attributes. Nat. Sci. 2009, 1:63-92.
    • (2009) Nat. Sci. , vol.1 , pp. 63-92
    • Chou, K.C.1    Shen, H.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.