메뉴 건너뛰기




Volumn 34, Issue 5, 2006, Pages 2367-2386

Best subset selection, persistence in high-dimensional statistical learning and optimization under l1 constraint

Author keywords

Persistence; Variable selection

Indexed keywords


EID: 33845612972     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053606000000768     Document Type: Article
Times cited : (80)

References (26)
  • 1
    • 33745156863 scopus 로고    scopus 로고
    • Some theory of Fisher's linear discriminant function, "naive Bayes," and some alternatives where there are many more variables than observations
    • MR2108040
    • BICKEL, P. and LEVINA, E. (2004). Some theory of Fisher's linear discriminant function, "naive Bayes," and some alternatives where there are many more variables than observations. Bernoulli 10 989-1010. MR2108040
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • BICKEL, P.1    LEVINA, E.2
  • 2
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures (with discussion)
    • MR1874152
    • BREIMAN, L. (2001). Statistical modeling: The two cultures (with discussion). Statist. Sci. 16 199-231. MR1874152
    • (2001) Statist. Sci , vol.16 , pp. 199-231
    • BREIMAN, L.1
  • 3
    • 14644395930 scopus 로고    scopus 로고
    • Population theory for boosting ensembles
    • MR2050998
    • BREIMAN, L. (2004). Population theory for boosting ensembles. Ann. Statist. 32 1-11. MR2050998
    • (2004) Ann. Statist , vol.32 , pp. 1-11
    • BREIMAN, L.1
  • 4
    • 33847360949 scopus 로고    scopus 로고
    • Discussion of boosting papers
    • BÜHLMANN, P. and BIN, Y. (2004). Discussion of boosting papers. Ann. Statist. 32 96-101.
    • (2004) Ann. Statist , vol.32 , pp. 96-101
    • BÜHLMANN, P.1    BIN, Y.2
  • 5
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • MR1854649
    • CHEN, S., DONOHO, D. and SAUNDERS, M. (2001). Atomic decomposition by basis pursuit. SIAM Rev. 43 129-159. MR1854649
    • (2001) SIAM Rev , vol.43 , pp. 129-159
    • CHEN, S.1    DONOHO, D.2    SAUNDERS, M.3
  • 6
    • 33847363114 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution. Technical Report 2004-9, Dept. Statistics, Stanford Univ.
    • 1-norm solution is also the sparsest solution. Technical Report 2004-9, Dept. Statistics, Stanford Univ.
  • 7
    • 33847351610 scopus 로고    scopus 로고
    • 1-norm near-solution approximates the sparsest near-solution. Technical Report 2004-10, Dept. Statistics, Stanford Univ.
    • 1-norm near-solution approximates the sparsest near-solution. Technical Report 2004-10, Dept. Statistics, Stanford Univ.
  • 8
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression (with discussion)
    • MR2060166
    • EFRON, B., JOHNSTONE, I., HASTIE, T. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499. MR2060166
    • (2004) Ann. Statist , vol.32 , pp. 407-499
    • EFRON, B.1    JOHNSTONE, I.2    HASTIE, T.3    TIBSHIRANI, R.4
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1360
    • FAN, J.1    LI, R.2
  • 10
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • MR2065194
    • FAN, J. and PENG, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. MR2065194
    • (2004) Ann. Statist , vol.32 , pp. 928-961
    • FAN, J.1    PENG, H.2
  • 12
    • 31344477296 scopus 로고    scopus 로고
    • Prediction, model selection and random dimension penalties
    • MR2203888
    • GREENSHTEIN, E. (2005). Prediction, model selection and random dimension penalties. Sankhyā 67 46-73. MR2203888
    • (2005) Sankhyā , vol.67 , pp. 46-73
    • GREENSHTEIN, E.1
  • 13
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional predictor selection and the virtue of overparametrization
    • MR2108039
    • GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • GREENSHTEIN, E.1    RITOV, Y.2
  • 14
    • 33847365722 scopus 로고    scopus 로고
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York. MR1851606
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York. MR1851606
  • 15
    • 0001033261 scopus 로고
    • Robust regression: Asymptotics, conjectures, and Monte Carlo
    • MR0356373
    • HUBER, P. (1973). Robust regression: Asymptotics, conjectures, and Monte Carlo. Ann. Statist. 1 799-821. MR0356373
    • (1973) Ann. Statist , vol.1 , pp. 799-821
    • HUBER, P.1
  • 16
    • 0034362823 scopus 로고    scopus 로고
    • Functional aggregation for nonparametric regression
    • MR1792783
    • JUDITSKY, A. and NEMIROVSKI, A. (2000). Functional aggregation for nonparametric regression. Ann. Statist. 28681-712. MR1792783
    • (2000) Ann. Statist , vol.28 , pp. 681-712
    • JUDITSKY, A.1    NEMIROVSKI, A.2
  • 17
    • 0001556720 scopus 로고    scopus 로고
    • Efficient agnostic learning of neural networks with bounded fan-in
    • MR1447518
    • LEE, W. S., BARTLETT, P. L. and WILLIAMSON, R. C. (1996). Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inform. Theory 42 2118-2132. MR1447518
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 2118-2132
    • LEE, W.S.1    BARTLETT, P.L.2    WILLIAMSON, R.C.3
  • 18
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • MR2051000
    • LUGOSI, G. and VAYATIS, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 30-55. MR2051000
    • (2004) Ann. Statist , vol.32 , pp. 30-55
    • LUGOSI, G.1    VAYATIS, N.2
  • 19
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • MEINSHAUSEN, N.1    BÜHLMANN, P.2
  • 20
    • 33847358145 scopus 로고    scopus 로고
    • NEMIROVSKI, A. and YUDIN, D. (1983). Problem Complexity and Method Efficiency in Optimization. Wiley, New York. MR0702836
    • NEMIROVSKI, A. and YUDIN, D. (1983). Problem Complexity and Method Efficiency in Optimization. Wiley, New York. MR0702836
  • 21
    • 12244284624 scopus 로고    scopus 로고
    • DNA microarray experiments: Biological and technological aspects
    • MR1939398
    • NGUYEN, D. V., ARPAT, A. B., WANG, N. and CARROLL, R. J. (2002). DNA microarray experiments: Biological and technological aspects. Biometrics 58 701-717. MR1939398
    • (2002) Biometrics , vol.58 , pp. 701-717
    • NGUYEN, D.V.1    ARPAT, A.B.2    WANG, N.3    CARROLL, R.J.4
  • 22
    • 33847409243 scopus 로고    scopus 로고
    • PISIER, G. (1981). Remarques sur un résultat non publié de B, Maurey. In Seminaire d'Analyse Fonctionelle 112. École Polytechnique, Palaiseau. MR0659306
    • PISIER, G. (1981). Remarques sur un résultat non publié de B, Maurey. In Seminaire d'Analyse Fonctionelle 112. École Polytechnique, Palaiseau. MR0659306
  • 23
    • 0000981525 scopus 로고
    • 2/n is large. I. Consistency
    • MR0760690
    • 2/n is large. I. Consistency. Ann. Statist. 12 1298-1309. MR0760690
    • (1984) Ann. Statist , vol.12 , pp. 1298-1309
    • PORTNOY, S.1
  • 24
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 25
    • 33847359102 scopus 로고    scopus 로고
    • VAPNIK, N. V. (1998). Statistical Learning Theory. Wiley, New York. MR1641250
    • VAPNIK, N. V. (1998). Statistical Learning Theory. Wiley, New York. MR1641250
  • 26
    • 0000007831 scopus 로고
    • Asymptotic behavior of M-estimators for the linear model
    • MR0520237
    • YOHAI, V. J. and MARONNA, R. A. (1979). Asymptotic behavior of M-estimators for the linear model. Ann. Statist. 7 258-268. MR0520237
    • (1979) Ann. Statist , vol.7 , pp. 258-268
    • YOHAI, V.J.1    MARONNA, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.