메뉴 건너뛰기




Volumn , Issue , 2012, Pages 761-770

Robust ranking models via risk-sensitive optimization

Author keywords

machine learning; re ranking; robust algorithms

Indexed keywords

LEARNING FRAMEWORKS; LEARNING TO RANK; RANKING MODEL; RE-RANKING; ROBUST ALGORITHM; SEARCH RESULTS; UNIFIED FRAMEWORK; USER SATISFACTION;

EID: 84866596007     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2348283.2348385     Document Type: Conference Paper
Times cited : (66)

References (39)
  • 1
    • 80052115567 scopus 로고    scopus 로고
    • Inferring and using location metadata to personalize web search
    • P. N. Bennett, F. Radlinski, R. W. White, and E. Yilmaz. Inferring and using location metadata to personalize web search. In SIGIR, pages 135-144, 2011.
    • (2011) SIGIR , pp. 135-144
    • Bennett, P.N.1    Radlinski, F.2    White, R.W.3    Yilmaz, E.4
  • 2
    • 72449191647 scopus 로고    scopus 로고
    • Algorithms and incentives for robust ranking
    • R. Bhattacharjee and A. Goel. Algorithms and incentives for robust ranking. In SODA 2007.
    • SODA 2007
    • Bhattacharjee, R.1    Goel, A.2
  • 3
    • 77954655724 scopus 로고    scopus 로고
    • Ranking specialization for web search: A divide-and-conquer approach by using topical ranksvm
    • J. Bian, X. Li, F. Li, Z. Zheng, and H. Zha. Ranking specialization for web search: a divide-and-conquer approach by using topical ranksvm. In WWW, pages 131-140, 2010.
    • (2010) WWW , pp. 131-140
    • Bian, J.1    Li, X.2    Li, F.3    Zheng, Z.4    Zha, H.5
  • 4
    • 77950893635 scopus 로고    scopus 로고
    • Ranking with query-dependent loss for web search
    • J. Bian, T.-Y. Liu, T. Qin, and H. Zha. Ranking with query-dependent loss for web search. In WSDM, pages 141-150, 2010.
    • (2010) WSDM , pp. 141-150
    • Bian, J.1    Liu, T.-Y.2    Qin, T.3    Zha, H.4
  • 7
    • 84864039510 scopus 로고    scopus 로고
    • Learning to Rank with Nonsmooth Cost Functions
    • MIT Press
    • C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to Rank with Nonsmooth Cost Functions. In NIPS, pages 193-200. MIT Press, 2006.
    • (2006) NIPS , pp. 193-200
    • Burges, C.J.C.1    Ragno, R.2    Le, Q.V.3
  • 8
    • 33750287039 scopus 로고    scopus 로고
    • Term proximity scoring for ad-hoc retrieval on very large text collections
    • S. Büttcher, C. L. A. Clarke, and B. Lushman. Term proximity scoring for ad-hoc retrieval on very large text collections. In SIGIR, pages 621-622, 2006.
    • (2006) SIGIR , pp. 621-622
    • Büttcher, S.1    Clarke, C.L.A.2    Lushman, B.3
  • 10
    • 74549174132 scopus 로고    scopus 로고
    • Reducing the risk of query expansion via robust constrained optimization
    • K. Collins-Thompson. Reducing the risk of query expansion via robust constrained optimization. In CIKM 2009, pages 837-846.
    • CIKM 2009 , pp. 837-846
    • Collins-Thompson, K.1
  • 13
    • 80052107363 scopus 로고    scopus 로고
    • Davison. Learning to rank for freshness and relevance
    • N. Dai, M. Shokouhi, and B. D. Davison. Learning to rank for freshness and relevance. In SIGIR, pages 95-104, 2011.
    • (2011) SIGIR , pp. 95-104
    • Dai, N.1    Shokouhi, M.2    D, B.3
  • 14
    • 72449208539 scopus 로고    scopus 로고
    • On the local optimality of lambdarank
    • P. Donmez, K. M. Svore, and C. J. C. Burges. On the local optimality of lambdarank. In SIGIR, pages 460-467, 2009.
    • (2009) SIGIR , pp. 460-467
    • Donmez, P.1    Svore, K.M.2    Burges, C.J.C.3
  • 15
    • 35348880974 scopus 로고    scopus 로고
    • A large-scale evaluation and analysis of personalized search strategies
    • Z. Dou, R. Song, and J.-R. Wen. A large-scale evaluation and analysis of personalized search strategies. In WWW, pages 581-590, 2007.
    • (2007) WWW , pp. 581-590
    • Dou, Z.1    Song, R.2    Wen, J.-R.3
  • 17
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000.
    • (2000) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 18
    • 57349172967 scopus 로고    scopus 로고
    • Query dependent ranking using k-nearest neighbor
    • X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum. Query dependent ranking using k-nearest neighbor. In SIGIR, pages 115-122, 2008.
    • (2008) SIGIR , pp. 115-122
    • Geng, X.1    Liu, T.-Y.2    Qin, T.3    Arnold, A.4    Li, H.5    Shum, H.-Y.6
  • 19
    • 84866602672 scopus 로고    scopus 로고
    • Inferring probability of relevance using the method of logistic regression
    • F. Gey. Inferring probability of relevance using the method of logistic regression. In Proc. 17th SIGIR Conference, 1994.
    • Proc. 17th SIGIR Conference, 1994
    • Gey, F.1
  • 20
    • 84866602673 scopus 로고    scopus 로고
    • Predicting query performance using query, result, and user interaction features
    • Q. Guo, R. W. White, S. Dumais, J. Wang, and B. Anderson. Predicting query performance using query, result, and user interaction features. In RIAO, 2010.
    • (2010) RIAO
    • Guo, Q.1    White, R.W.2    Dumais, S.3    Wang, J.4    Anderson, B.5
  • 21
    • 70349248327 scopus 로고    scopus 로고
    • A survey of pre-retrieval query performance predictors
    • C. Hauff, D. Hiemstra, and F. de Jong. A survey of pre-retrieval query performance predictors. In CIKM, pages 1419-1420, 2008.
    • (2008) CIKM , pp. 1419-1420
    • Hauff, C.1    Hiemstra, D.2    De Jong, F.3
  • 22
    • 79952380648 scopus 로고    scopus 로고
    • Learning to re-rank web search results with multiple pairwise features
    • C. Kang, X. Wang, J. Chen, C. Liao, Y. Chang, B. L. Tseng, and Z. Zheng. Learning to re-rank web search results with multiple pairwise features. In WSDM'11, pages 735-744, 2011.
    • (2011) WSDM'11 , pp. 735-744
    • Kang, C.1    Wang, X.2    Chen, J.3    Liao, C.4    Chang, Y.5    Tseng, B.L.6    Zheng, Z.7
  • 24
    • 72449201127 scopus 로고    scopus 로고
    • Comparing both relevance and robustness in selection of web ranking functions
    • F. Li, X. Li, S. Ji, and Z. Zheng. Comparing both relevance and robustness in selection of web ranking functions. In SIGIR '09, pages 648-649, 2009.
    • (2009) SIGIR '09 , pp. 648-649
    • Li, F.1    Li, X.2    Ji, S.3    Zheng, Z.4
  • 26
    • 80052119056 scopus 로고    scopus 로고
    • A boosting approach to improving pseudo-relevance feedback
    • Y. Lv, C. Zhai, and W. Chen. A boosting approach to improving pseudo-relevance feedback. In SIGIR, pages 165-174, 2011.
    • (2011) SIGIR , pp. 165-174
    • Lv, Y.1    Zhai, C.2    Chen, W.3
  • 27
    • 84885662673 scopus 로고    scopus 로고
    • A Markov Random Field model for term dependencies
    • D. Metzler and W. B. Croft. A Markov Random Field model for term dependencies. In Proc. 28th SIGIR Conference, pages 472-479, 2005.
    • (2005) Proc. 28th SIGIR Conference , pp. 472-479
    • Metzler, D.1    Croft, W.B.2
  • 28
    • 0032268440 scopus 로고    scopus 로고
    • A language modeling approach to information retrieval
    • J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Proc. 21st SIGIR Conference, pages 275-281, 1998.
    • (1998) Proc. 21st SIGIR Conference , pp. 275-281
    • Ponte, J.1    Croft, W.B.2
  • 31
    • 80052661691 scopus 로고    scopus 로고
    • Learning to rank with multiple objective functions
    • K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to rank with multiple objective functions. In WWW, pages 367-376, 2011.
    • (2011) WWW , pp. 367-376
    • Svore, K.M.1    Volkovs, M.N.2    Burges, C.J.3
  • 32
    • 36448996097 scopus 로고    scopus 로고
    • An exploration of proximity measures in information retrieval
    • T. Tao and C. Zhai. An exploration of proximity measures in information retrieval. In Proc. 30th SIGIR Conference, 2007.
    • Proc. 30th SIGIR Conference, 2007
    • Tao, T.1    Zhai, C.2
  • 34
    • 33646133859 scopus 로고    scopus 로고
    • The trec robust retrieval track
    • June
    • E. M. Voorhees. The trec robust retrieval track. SIGIR Forum, 39(1):11-20, June 2005.
    • (2005) SIGIR Forum , vol.39 , Issue.1 , pp. 11-20
    • Voorhees, E.M.1
  • 35
    • 72449155619 scopus 로고    scopus 로고
    • Portfolio theory of information retrieval
    • J. Wang and J. Zhu. Portfolio theory of information retrieval. In SIGIR. ACM, 2009.
    • (2009) SIGIR. ACM
    • Wang, J.1    Zhu, J.2
  • 36
    • 78651335112 scopus 로고    scopus 로고
    • Predicting short-term interests using activity-based search context
    • R. W. White, P. N. Bennett, and S. T. Dumais. Predicting short-term interests using activity-based search context. In CIKM, pages 1009-1018, 2010.
    • (2010) CIKM , pp. 1009-1018
    • White, R.W.1    Bennett, P.N.2    Dumais, S.T.3
  • 37
    • 77953628309 scopus 로고    scopus 로고
    • Adapting boosting for information retrieval measures
    • June
    • Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval measures. Information Retrieval, 13:254-270, June 2010.
    • (2010) Information Retrieval , vol.13 , pp. 254-270
    • Wu, Q.1    Burges, C.J.2    Svore, K.M.3    Gao, J.4
  • 39
    • 72449124739 scopus 로고    scopus 로고
    • Risky business: Modeling and exploiting uncertainty in information retrieval
    • J. Zhu, J. Wang, I. J. Cox, and M. J. Taylor. Risky business: modeling and exploiting uncertainty in information retrieval. In SIGIR. ACM, 2009.
    • (2009) SIGIR. ACM
    • Zhu, J.1    Wang, J.2    Cox, I.J.3    Taylor, M.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.