메뉴 건너뛰기




Volumn , Issue , 2010, Pages 131-140

Ranking specialization for web search: A divide-and-conquer approach by using topical RankSVM

Author keywords

ranking specialization for web search; ranking sensitive query topic; topical RankSVM

Indexed keywords

BENCHMARK DATASETS; DATA SETS; DIVIDE AND CONQUER; DIVIDE-AND-CONQUER APPROACH; LEARNING PROCESS; LOSS FUNCTIONS; MACHINE LEARNING TECHNIQUES; MODEL APPROACH; RANKING ALGORITHM; RANKING APPROACH; RANKING FUNCTIONS; RANKING MODEL; RANKING PERFORMANCE; UNSUPERVISED CLUSTERING METHODS; WEB SEARCHES;

EID: 77954655724     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1772690.1772705     Document Type: Conference Paper
Times cited : (31)

References (24)
  • 1
    • 77954654090 scopus 로고    scopus 로고
    • Letor dataset website
    • Letor dataset website. http://research.microsoft.com/en-us/um/beijing/ projects/letor/.
  • 4
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • B. Bolstad, R. Irizarry, M. Astrand, and T. Speed. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19:185-193, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.1    Irizarry, R.2    Astrand, M.3    Speed, T.4
  • 12
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In Proc. of KDD, 2002.
    • Proc. of KDD, 2002
    • Joachims, T.1
  • 13
    • 1542377552 scopus 로고    scopus 로고
    • Query type classification for web document retrieval
    • I. Kang and G. Kim. Query type classification for web document retrieval. In Proc. of SIGIR, 2003.
    • Proc. of SIGIR, 2003
    • Kang, I.1    Kim, G.2
  • 14
    • 0034790672 scopus 로고    scopus 로고
    • Document language models, query models, and risk minimization for information retrieval
    • J. Lafferty and C. Zhai. Document language models, query models, and risk minimization for information retrieval. In Proc. of SIGIR, 2001.
    • Proc. of SIGIR, 2001
    • Lafferty, J.1    Zhai, C.2
  • 15
    • 57649092193 scopus 로고    scopus 로고
    • Mcrank: Learning to rank using multiple classification and gradient boosting
    • P. Li, B. Christopher, and Q. Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. In Proc. of NIPS, 2007.
    • Proc. of NIPS, 2007
    • Li, P.1    Christopher, B.2    Wu, Q.3
  • 16
    • 45449095122 scopus 로고    scopus 로고
    • Letor: Benchmark dataset for research on learning to rank for information retrieval
    • T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank for information retrieval. In Proc. of SIGIR, 2007.
    • Proc. of SIGIR, 2007
    • Liu, T.-Y.1    Xu, J.2    Qin, T.3    Xiong, W.4    Li, H.5
  • 18
    • 79959883118 scopus 로고
    • Computer evaluation of indexing and text processing
    • G. Salton and M. E. Lesk. Computer evaluation of indexing and text processing. In Journal of ACM, 1968.
    • (1968) Journal of ACM
    • Salton, G.1    Lesk, M.E.2
  • 22
    • 34547700482 scopus 로고    scopus 로고
    • Incorporating query difference for learning retrieval functions in information retrieval
    • H. Zha, Z. Zheng, H. Fu, and G. Sun. Incorporating query difference for learning retrieval functions in information retrieval. In Proc. CIKM, 2006.
    • Proc. CIKM, 2006
    • Zha, H.1    Zheng, Z.2    Fu, H.3    Sun, G.4
  • 23
    • 36448953520 scopus 로고    scopus 로고
    • A regression framework for learning ranking functions using relative relevance judgments
    • Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression framework for learning ranking functions using relative relevance judgments. In Proc. of SIGIR, 2007.
    • Proc. of SIGIR, 2007
    • Zheng, Z.1    Zha, H.2    Chen, K.3    Sun, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.