메뉴 건너뛰기




Volumn , Issue , 2011, Pages 735-744

Learning to re-rank web search results with multiple pairwise features

Author keywords

Pairwise features; Re rank

Indexed keywords

DATA SETS; FUNCTION DECOMPOSITION METHOD; HIGH CONFIDENCE; LEARNING SETTINGS; PAIR-WISE COMPARISON; PAIRWISE FEATURES; RANKING FUNCTIONS; RE-RANK; RE-RANKING; SEARCH RESULTS; TWO MACHINES; WEB SEARCHES;

EID: 79952380648     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1935826.1935924     Document Type: Conference Paper
Times cited : (13)

References (27)
  • 1
    • 33750367864 scopus 로고    scopus 로고
    • Learning user interaction models for predicting web search result preferences
    • New York, NY, USA, ACM Press
    • E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user interaction models for predicting web search result preferences. In Proceedings of ACM SIGIR 2006, pages 3-10, New York, NY, USA, 2006. ACM Press.
    • (2006) Proceedings of ACM SIGIR 2006 , pp. 3-10
    • Agichtein, E.1    Brill, E.2    Dumais, S.3    Ragno, R.4
  • 2
    • 33746043842 scopus 로고    scopus 로고
    • Ranking tournaments
    • DOI 10.1137/050623905
    • N. Alon. Ranking tournaments. SIAM J. Discret. Math., 20 (1): 137-142, 2006. (Pubitemid 46352091)
    • (2006) SIAM Journal on Discrete Mathematics , vol.20 , Issue.1 , pp. 137-142
    • Alon, N.1
  • 3
    • 70049116439 scopus 로고    scopus 로고
    • Ranking as function approximation
    • C. Burges. Ranking as function approximation. Algorithms for Approximation, pages 3-18, 2006.
    • (2006) Algorithms for Approximation , pp. 3-18
    • Burges, C.1
  • 13
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist., 29: 1189-1232, 2001. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 16
  • 18
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • New York, NY, USA, ACM Press
    • T. Joachims. Optimizing search engines using clickthrough data. In KDD '02: Proceedings of the eighth ACM SIGKDD, pages 133-142, New York, NY, USA, 2002. ACM Press.
    • (2002) KDD '02: Proceedings of the Eighth ACM SIGKDD , pp. 133-142
    • Joachims, T.1
  • 19
    • 84885665252 scopus 로고    scopus 로고
    • Accurately interpreting clickthrough data as implicit feedback
    • New York, NY, USA, ACM Press
    • T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. In Proceedings of ACM SIGIR 2005, pages 154-161, New York, NY, USA, 2005. ACM Press.
    • (2005) Proceedings of ACM SIGIR 2005 , pp. 154-161
    • Joachims, T.1    Granka, L.2    Pan, B.3    Hembrooke, H.4    Gay, G.5
  • 21
    • 84863379285 scopus 로고    scopus 로고
    • Global ranking using continuous conditional random fields
    • T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li. Global ranking using continuous conditional random fields. In NIPS, pages 1281-1288, 2008.
    • (2008) NIPS , pp. 1281-1288
    • Qin, T.1    Liu, T.-Y.2    Zhang, X.-D.3    Wang, D.-S.4    Li, H.5
  • 22
    • 57349173530 scopus 로고    scopus 로고
    • Learning to rank relational objects and its application to web search
    • T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y. Xiong, and H. Li. Learning to rank relational objects and its application to web search. In WWW '08, pages 407-416, 2008.
    • (2008) WWW '08 , pp. 407-416
    • Qin, T.1    Liu, T.-Y.2    Zhang, X.-D.3    Wang, D.-S.4    Xiong, W.-Y.5    Li, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.