-
1
-
-
72449201450
-
-
C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with nonsmooth cost functions. In Neural Information Processing Systems (NIPS), 2006. See also MSR Technical Report MSR-TR-2006-60.
-
C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with nonsmooth cost functions. In Neural Information Processing Systems (NIPS), 2006. See also MSR Technical Report MSR-TR-2006-60.
-
-
-
-
2
-
-
31844446958
-
Learning to rank using gradient descent
-
Bonn, Germany
-
C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In International Conference on Machine Learning (ICML), Bonn, Germany, 2005.
-
(2005)
International Conference on Machine Learning (ICML)
-
-
Burges, C.J.C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
3
-
-
34547987951
-
Learning to rank: From pairwise to listwise approach
-
Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. Learning to rank: From pairwise to listwise approach. In International Conference on Machine Learning (ICML), pages 129-136, 2007.
-
(2007)
International Conference on Machine Learning (ICML)
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.Y.3
Tsai, M.F.4
Li, H.5
-
6
-
-
69249152658
-
A general approximation framework for direct optimization of information retrieval measures
-
MSR-TR-2008-164
-
T. Qin, T.Y. Liu, and H. Li. A general approximation framework for direct optimization of information retrieval measures. Microsoft Technical Report MSR-TR-2008-164, 2008.
-
(2008)
Microsoft Technical Report
-
-
Qin, T.1
Liu, T.Y.2
Li, H.3
-
7
-
-
39649119873
-
Query-level loss functions for information retrieval
-
T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y. Liu, and H. Li. Query-level loss functions for information retrieval. Information Processing and Management, 44(2):838-855, 2007.
-
(2007)
Information Processing and Management
, vol.44
, Issue.2
, pp. 838-855
-
-
Qin, T.1
Zhang, X.-D.2
Tsai, M.-F.3
Wang, D.-S.4
Liu, T.-Y.5
Li, H.6
-
9
-
-
31844442382
-
Learning structured prediction models: A large margin approach
-
Bonn, Germany
-
B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: A large margin approach. In International Conference on Machine Learning (ICML), Bonn, Germany, 2005.
-
(2005)
International Conference on Machine Learning (ICML)
-
-
Taskar, B.1
Chatalbashev, V.2
Koller, D.3
Guestrin, C.4
-
11
-
-
36448954244
-
-
J. Xu and H. Li. Adarank: A boosting algorithm for information retrieval. In ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pages 391-398, 2007.
-
J. Xu and H. Li. Adarank: A boosting algorithm for information retrieval. In ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pages 391-398, 2007.
-
-
-
-
12
-
-
72449175629
-
On using simultaneous perturbation stochastic approximation for ir measures, and the empirical optimality of lambdarank
-
Y. Yue and C.J.C Burges. On using simultaneous perturbation stochastic approximation for ir measures, and the empirical optimality of lambdarank. NIPS Machine Learning for Web Search Workshop, 2007.
-
(2007)
NIPS Machine Learning for Web Search Workshop
-
-
Yue, Y.1
Burges, C.J.C.2
|