메뉴 건너뛰기




Volumn 32, Issue 17, 2012, Pages 3570-3584

Regulation of insulin signaling by the phosphatidylinositol 3,4,5-triphosphate phosphatase SKIP through the scaffolding function of Pak1

Author keywords

[No Author keywords available]

Indexed keywords

INSULIN; MULTIPROTEIN COMPLEX; P21 ACTIVATED KINASE 1; PHOSPHATASE; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE; PHOSPHOINOSITIDE DEPENDENT PROTEIN KINASE 1; PROTEIN KINASE B BETA; RAC1 PROTEIN; SCAFFOLD PROTEIN; SKELETAL MUSCLE AND KIDNEY ENRICHED INOSITOL POLYPHOSPHATE PHOSPHATASE; UNCLASSIFIED DRUG;

EID: 84866289860     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00636-12     Document Type: Article
Times cited : (27)

References (36)
  • 1
    • 0034213327 scopus 로고    scopus 로고
    • Rho GTPases and their effector proteins
    • Bishop AL, Hall A. 2000. Rho GTPases and their effector proteins. Biochem. J. 348(Part 2):241-255.
    • (2000) Biochem. J. , vol.348 , Issue.PART 2 , pp. 241-255
    • Bishop, A.L.1    Hall, A.2
  • 2
    • 34547172596 scopus 로고    scopus 로고
    • A transforming mutation in the pleckstrin homology domain of AKT1 in cancer
    • Carpten JD, et al. 2007. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439-444.
    • (2007) Nature , vol.448 , pp. 439-444
    • Carpten, J.D.1
  • 3
    • 0035368548 scopus 로고    scopus 로고
    • Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
    • Cho H, et al. 2001. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292: 1728-1731.
    • (2001) Science , vol.292 , pp. 1728-1731
    • Cho, H.1
  • 4
    • 0034427027 scopus 로고    scopus 로고
    • Purification and identification of novel Rab effectors using affinity chromatography
    • Christoforidis S, Zerial M. 2000. Purification and identification of novel Rab effectors using affinity chromatography. Methods 20:403-410.
    • (2000) Methods , vol.20 , pp. 403-410
    • Christoforidis, S.1    Zerial, M.2
  • 5
    • 28544450844 scopus 로고    scopus 로고
    • Glucose transporter 4 cycling, compartments and controversies
    • Dugani CB, Klip A. 2005. Glucose transporter 4: cycling, compartments and controversies. EMBO Rep. 6:1137-1142.
    • (2005) EMBO Rep , vol.6 , pp. 1137-1142
    • Dugani, C.B.1    Klip, A.2
  • 6
    • 57349145336 scopus 로고    scopus 로고
    • Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains
    • Gao X, Zhang J. 2008. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19:4366-4373.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4366-4373
    • Gao, X.1    Zhang, J.2
  • 7
    • 85047693348 scopus 로고    scopus 로고
    • Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta
    • Garofalo RS, et al. 2003. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Invest. 112:197-208.
    • (2003) J. Clin. Invest. , vol.112 , pp. 197-208
    • Garofalo, R.S.1
  • 8
    • 2542528670 scopus 로고    scopus 로고
    • A family with severe insulin resistance and diabetes due to a mutation in AKT2
    • George S, et al. 2004. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304:1325-1328.
    • (2004) Science , vol.304 , pp. 1325-1328
    • George, S.1
  • 10
    • 55549119209 scopus 로고    scopus 로고
    • Scaffolding function of PAK in the PDK1-Akt pathway
    • Higuchi M, Onishi K, Kikuchi C, Gotoh Y. 2008. Scaffolding function of PAK in the PDK1-Akt pathway. Nat. Cell Biol. 10:1356-1364.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1356-1364
    • Higuchi, M.1    Onishi, K.2    Kikuchi, C.3    Gotoh, Y.4
  • 11
    • 80055087787 scopus 로고    scopus 로고
    • An activating mutation of AKT2 and human hypoglycemia
    • Hussain K, et al. 2011. An activating mutation of AKT2 and human hypoglycemia. Science 334:474.
    • (2011) Science , vol.334 , pp. 474
    • Hussain, K.1
  • 12
    • 0034646615 scopus 로고    scopus 로고
    • Identification and characterization of a novel inositol polyphosphate 5-phosphatase
    • Ijuin T, et al. 2000. Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J. Biol. Chem. 275:10870-10875.
    • (2000) J. Biol. Chem. , vol.275 , pp. 10870-10875
    • Ijuin, T.1
  • 13
    • 84857695184 scopus 로고    scopus 로고
    • Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP)
    • Ijuin T, Takenawa T. 2012. Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP). J. Biol. Chem. 287:6991-6999.
    • (2012) J. Biol. Chem. , vol.287 , pp. 6991-6999
    • Ijuin, T.1    Takenawa, T.2
  • 14
    • 0037312905 scopus 로고    scopus 로고
    • SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation
    • Ijuin T, Takenawa T. 2003. SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol. Cell. Biol. 23:1209-1220.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1209-1220
    • Ijuin, T.1    Takenawa, T.2
  • 15
    • 50249182374 scopus 로고    scopus 로고
    • Increased insulin action in SKIP heterozygous knockout mice
    • Ijuin T, et al. 2008. Increased insulin action in SKIP heterozygous knockout mice. Mol. Cell. Biol. 28:5184-5195.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 5184-5195
    • Ijuin, T.1
  • 16
    • 0028114186 scopus 로고
    • Epidermal growth factor triggers the translocation of insulin-responsive glucose transporter (GLUT4)
    • Ishii K, et al. 1994. Epidermal growth factor triggers the translocation of insulin-responsive glucose transporter (GLUT4). Biochem. Biophys. Res. Commun. 205:857-863.
    • (1994) Biochem. Biophys. Res. Commun. , vol.205 , pp. 857-863
    • Ishii, K.1
  • 17
    • 2342606439 scopus 로고    scopus 로고
    • Endogenous SHIP2 does not localize in lipid rafts in 3T3-L1 adipocytes
    • Jacobs C, Onnockx S, Vandenbroere I, Pirson I. 2004. Endogenous SHIP2 does not localize in lipid rafts in 3T3-L1 adipocytes. FEBS Lett. 565:70-74.
    • (2004) FEBS Lett , vol.565 , pp. 70-74
    • Jacobs, C.1    Onnockx, S.2    Vandenbroere, I.3    Pirson, I.4
  • 18
    • 0028819535 scopus 로고
    • Platelet-derived growth factor triggers translocation of the insulin-regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3-kinase binding sites on the receptor
    • Kamohara S, et al. 1995. Platelet-derived growth factor triggers translocation of the insulin-regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3-kinase binding sites on the receptor. Proc. Natl. Acad. Sci. U. S. A. 92:1077-1081.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 1077-1081
    • Kamohara, S.1
  • 19
    • 8144228588 scopus 로고    scopus 로고
    • Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates
    • Komander D, et al. 2004. Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J. 23:3918-3928.
    • (2004) EMBO J , vol.23 , pp. 3918-3928
    • Komander, D.1
  • 20
    • 0034604338 scopus 로고    scopus 로고
    • Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch
    • Lei M, et al. 2000. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387-397.
    • (2000) Cell , vol.102 , pp. 387-397
    • Lei, M.1
  • 21
    • 0036158988 scopus 로고    scopus 로고
    • Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1
    • Parrini MC, Lei M, Harrison SC, Mayer BJ. 2002. Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol. Cell 9:73-83.
    • (2002) Mol. Cell , vol.9 , pp. 73-83
    • Parrini, M.C.1    Lei, M.2    Harrison, S.C.3    Mayer, B.J.4
  • 22
    • 0029095414 scopus 로고
    • Endothelial dysfunction in a model of hyperglycemia and hyperinsulinemia
    • Pieper GM, Meier DA, Hager SR. 1995. Endothelial dysfunction in a model of hyperglycemia and hyperinsulinemia. Am. J. Physiol. 269:H845-H850.
    • (1995) Am. J. Physiol. , vol.269
    • Pieper, G.M.1    Meier, D.A.2    Hager, S.R.3
  • 23
    • 80755141307 scopus 로고    scopus 로고
    • The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4 5)P(3)
    • Pilling C, Landgraf KE, Falke JJ. 2011. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3). Biochemistry 50:9845-9856.
    • (2011) Biochemistry , vol.50 , pp. 9845-9856
    • Pilling, C.1    Landgraf, K.E.2    Falke, J.J.3
  • 24
    • 0035936763 scopus 로고    scopus 로고
    • New perspectives into the molecular pathogenesis and treatment of type 2 diabetes
    • Saltiel AR. 2001. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104:517-529.
    • (2001) Cell , vol.104 , pp. 517-529
    • Saltiel, A.R.1
  • 25
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296-1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 26
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 27
    • 20044364159 scopus 로고    scopus 로고
    • Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity
    • Sleeman MW, et al. 2005. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med. 11:199-205.
    • (2005) Nat. Med. , vol.11 , pp. 199-205
    • Sleeman, M.W.1
  • 28
    • 0027201791 scopus 로고
    • Hyperinsulinemia, insulin resistance, and hyperglycemia: contributing factors in the pathogenesis of hypertension and atherosclerosis
    • Sowers JR, et al. 1993. Hyperinsulinemia, insulin resistance, and hyperglycemia: contributing factors in the pathogenesis of hypertension and atherosclerosis. Am. J. Hypertens. 6:260S-270S.
    • (1993) Am. J. Hypertens. , vol.6
    • Sowers, J.R.1
  • 29
    • 9444259803 scopus 로고    scopus 로고
    • Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts
    • Török D, et al. 2004. Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts. J. Cell Sci. 117:5447-5455.
    • (2004) J. Cell Sci. , vol.117 , pp. 5447-5455
    • Török, D.1
  • 30
    • 0029828473 scopus 로고    scopus 로고
    • Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase
    • Tsakiridis T, Taha C, Grinstein S, Klip A. 1996. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J. Biol. Chem. 271:19664-19667.
    • (1996) J. Biol. Chem. , vol.271 , pp. 19664-19667
    • Tsakiridis, T.1    Taha, C.2    Grinstein, S.3    Klip, A.4
  • 31
    • 77954447111 scopus 로고    scopus 로고
    • Crucial role of the small GTPase Rac1 in insulinstimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma
    • Ueda S, et al. 2010. Crucial role of the small GTPase Rac1 in insulinstimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J. 24:2254-2261.
    • (2010) FASEB J , vol.24 , pp. 2254-2261
    • Ueda, S.1
  • 32
    • 0042421854 scopus 로고    scopus 로고
    • Platelet-derived growth factor (PDGF) stimulates glucose transport in 3T3-L1 adipocytes overexpressing PDGF receptor by a pathway independent of insulin receptor substrates
    • Whiteman EL, Chen JJ, Birnbaum MJ. 2003. Platelet-derived growth factor (PDGF) stimulates glucose transport in 3T3-L1 adipocytes overexpressing PDGF receptor by a pathway independent of insulin receptor substrates. Endocrinology 144:3811-3820.
    • (2003) Endocrinology , vol.144 , pp. 3811-3820
    • Whiteman, E.L.1    Chen, J.J.2    Birnbaum, M.J.3
  • 33
    • 19944430614 scopus 로고    scopus 로고
    • Muscle-specific Pten deletion protects against insulin resistance and diabetes
    • Wijesekara N, et al. 2005. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell. Biol. 25:1135-1145.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 1135-1145
    • Wijesekara, N.1
  • 34
    • 7044231917 scopus 로고    scopus 로고
    • Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels
    • Yuasa T, et al. 2004. Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels. Diabetes 53:2776-2786.
    • (2004) Diabetes , vol.53 , pp. 2776-2786
    • Yuasa, T.1
  • 35
    • 0032748298 scopus 로고    scopus 로고
    • Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity
    • Zenke FT, King CC, Bohl BP, Bokoch GM. 1999. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274:32565-32573.
    • (1999) J. Biol. Chem. , vol.274 , pp. 32565-32573
    • Zenke, F.T.1    King, C.C.2    Bohl, B.P.3    Bokoch, G.M.4
  • 36
    • 8744305112 scopus 로고    scopus 로고
    • Analysis of insulin signalling by RNAi-based gene silencing
    • Zhou QL, et al. 2004. Analysis of insulin signalling by RNAi-based gene silencing. Biochem. Soc. Trans. 32:817-821.
    • (2004) Biochem. Soc. Trans. , vol.32 , pp. 817-821
    • Zhou, Q.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.