-
1
-
-
0001882616
-
Fast algorithms for mining association rules in large databases
-
Los Altos: Morgan Kaufmann
-
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proc. international conference on very large databases, Santiage, Chile (pp. 478-499). Los Altos: Morgan Kaufmann.
-
(1994)
Proc. International Conference on Very Large Databases, Santiage, Chile
, pp. 478-499
-
-
Agrawal, R.1
Srikant, R.2
-
2
-
-
0013165294
-
Acyclic programs
-
Apt, K. R., & Bezem, M. (1991). Acyclic programs. New Generation Computing, 9(3/4), 335-364.
-
(1991)
New Generation Computing
, vol.9
, Issue.3-4
, pp. 335-364
-
-
Apt, K.R.1
Bezem, M.2
-
3
-
-
85051974903
-
-
In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, & N. M Avouris Eds ECAI 361-M Avouris Eds ECAI 365
-
Biba,M., Ferilli, S., & Esposito, F. (2008). Structure learning of Markov logic networks through iterated local search. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, & N. M. Avouris (Eds.), ECAI (pp. 361-365).
-
(2008)
Structure Learning of Markov Logic Networks Through Iterated Local Search.
-
-
Biba, M.1
Ferilli, S.2
Esposito, F.3
-
5
-
-
70350574561
-
Exploring optimization of semantic relationship graph for multi-relational Bayesian classification
-
Chen, H., Liu, H., Han, J., & Yin, X. (2009). Exploring optimization of semantic relationship graph for multi-relational Bayesian classification. Decision Support Systems, 48(1), 112-121.
-
(2009)
Decision Support Systems
, vol.48
, Issue.1
, pp. 112-121
-
-
Chen, H.1
Liu, H.2
Han, J.3
Yin, X.4
-
6
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering, D. (2003). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3, 507-554.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.1
-
7
-
-
33750284507
-
-
CMU The Tetrad Group, Department of Philosophy
-
CMU The Tetrad Group, Department of Philosophy (2008). The Tetrad project: Causal models and statistical data. http://www.phil.cmu.edu/projects/ tetrad/.
-
(2008)
The Tetrad Project: Causal Models and Statistical Data
-
-
-
10
-
-
77955019302
-
On the relationship between logical Bayesian networks and probabilistic logic programming based on the distribution semantics
-
In L. De Raedt (Ed.). ILP). Berlin: Springer
-
Fierens, D. (2009). On the relationship between logical Bayesian networks and probabilistic logic programming based on the distribution semantics. In L. De Raedt (Ed.), Lecture notes in computer science: Vol. 5989. ILP (pp. 17-24). Berlin: Springer.
-
(2009)
Lecture Notes in Computer Science
, vol.5989
, pp. 17-24
-
-
Fierens, D.1
-
11
-
-
26944483138
-
Logical Bayesian networks and their relation to other probabilistic logical models
-
Inductive Logic Programming: 15th International Conference, ILP 2005. Proceedings
-
Fierens, D., Blockeel, H., Bruynooghe,M., & Ramon, J. (2005). Logical Bayesian networks and their relation to other probabilistic logical models. In S. Kramer & B. Pfahringer (Eds.), Lecture notes in computer science: Vol. 3625. ILP (pp. 121-135). Berlin: Springer. (Pubitemid 41479989)
-
(2005)
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
, vol.3625
, pp. 121-135
-
-
Fierens, D.1
Blockeel, H.2
Bruynooghe, M.3
Ramon, J.4
-
13
-
-
38049156405
-
A method for multi-relational classification using single and multifeature aggregation functions
-
Frank, R., Moser, F., & Ester, M. (2007). A method for multi-relational classification using single and multifeature aggregation functions. In PKDD (pp. 430-437).
-
(2007)
PKDD
, pp. 430-437
-
-
Frank, R.1
Moser, F.2
Ester, M.3
-
14
-
-
84880688943
-
Learning probabilistic relational models
-
Berlin: Springer
-
Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In IJCAI (pp. 1300-1309). Berlin: Springer.
-
(1999)
IJCAI
, pp. 1300-1309
-
-
Friedman, N.1
Getoor, L.2
Koller, D.3
Pfeffer, A.4
-
15
-
-
0030125397
-
Knowledge representation and inference in similarity networks and Bayesian multinets
-
Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82(1-2), 45-74. (Pubitemid 126374148)
-
(1996)
Artificial Intelligence
, vol.82
, Issue.1-2
, pp. 45-74
-
-
Geiger, D.1
Heckerman, D.2
-
16
-
-
32044446066
-
PRL: A probabilistic relational language
-
DOI 10.1007/s10994-006-5831-3
-
Getoor, L., & Grant, J. (2006). Prl: A probabilistic relational language. Machine Learning, 62(1-2), 7-31. (Pubitemid 43202305)
-
(2006)
Machine Learning
, vol.62
, Issue.1-2 SPEC. ISSUE
, pp. 7-31
-
-
Getoor, L.1
Grant, J.2
-
18
-
-
47849098175
-
Probabilistic relational models
-
Cambridge: MIT Press, Chap. 5
-
Getoor, L., Friedman, N., Koller, D., Pfeffer, A., & Taskar, B. (2007). Probabilistic relational models. In Introduction to statistical relational learning (pp. 129-173). Cambridge: MIT Press, Chap. 5.
-
(2007)
Introduction to Statistical Relational Learning
, pp. 129-173
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
Taskar, B.5
-
19
-
-
77958574305
-
Probabilistic entity-relationship models, PRMs, and plate models
-
Cambridge: MIT Press
-
Heckerman, D., Meek, C., & Koller, D. (2007). Probabilistic entity-relationship models, PRMs, and plate models. In Introduction to statistical relational learning. Cambridge: MIT Press.
-
(2007)
Introduction to Statistical Relational Learning
-
-
Heckerman, D.1
Meek, C.2
Koller, D.3
-
20
-
-
56449093057
-
Discriminative structure and parameter learning for Markov logic networks
-
In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.). New York: ACM
-
Huynh, T. N., & Mooney, R. J. (2008). Discriminative structure and parameter learning for Markov logic networks. In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), ICML (pp. 416-423). New York: ACM.
-
(2008)
ICML
, pp. 416-423
-
-
Huynh, T.N.1
Mooney, R.J.2
-
21
-
-
1942450651
-
Linkage and autocorrelation cause feature selection bias in relational learning
-
Jensen, D., & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational learning. In ICML.
-
(2002)
ICML
-
-
Jensen, D.1
Neville, J.2
-
24
-
-
77958615695
-
Structure learning for Markov logic networks with many descriptive attributes
-
Khosravi, H., Schulte, O., Man, T., Xu, X., & Bina, B. (2010). Structure learning for Markov logic networks with many descriptive attributes. In Proceedings of the twenty-fourth conference on artificial intelligence (AAAI) (pp. 487-493).
-
(2010)
Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI)
, pp. 487-493
-
-
Khosravi, H.1
Schulte, O.2
Man, T.3
Xu, X.4
Bina, B.5
-
25
-
-
0020160078
-
Equivalence of relational algebra and relational calculus query languages having aggregate functions
-
Klug, A. C. (1982). Equivalence of relational algebra and relational calculus query languages having aggregate functions. Journal of the ACM, 29(3), 699-717.
-
(1982)
Journal of the ACM
, vol.29
, Issue.3
, pp. 699-717
-
-
Klug, A.C.1
-
26
-
-
31844432693
-
Learning the structure of Markov logic networks
-
In L. De Raedt & S. Wrobel (Eds.), New York: ACM
-
Kok, S., & Domingos, P. (2005). Learning the structure of Markov logic networks. In L. De Raedt & S. Wrobel (Eds.), ICML (pp. 441-448). New York: ACM.
-
(2005)
ICML
-
-
Kok, S.1
Domingos, P.2
-
27
-
-
34547980897
-
Statistical predicate invention
-
New York: ACM
-
Kok, S., & Domingos, P. (2007). Statistical predicate invention. In ICML (pp. 433-440). New York: ACM.
-
(2007)
ICML
, pp. 433-440
-
-
Kok, S.1
Domingos, P.2
-
28
-
-
77958538856
-
Learning Markov logic network structure via hypergraph lifting
-
In A. Pohoreckyj Danyluk, L. Bottou, & M. L. Littman (Eds.), New York: ACM
-
Kok, S., & Domingos, P. (2009). Learning Markov logic network structure via hypergraph lifting. In A. Pohoreckyj Danyluk, L. Bottou, & M. L. Littman (Eds.), ICML (pp. 64-71). New York: ACM.
-
(2009)
ICML
-
-
Kok, S.1
Domingos, P.2
-
29
-
-
77956519107
-
Learning Markov logic networks using structural motifs
-
Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In ICML 10 (pp. 551-558).
-
(2010)
ICML
, vol.10
, pp. 551-558
-
-
Kok, S.1
Domingos, P.2
-
30
-
-
33749545442
-
-
(Technical Report). University of Washington
-
Kok, S., Summer, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., & Domingos, P. (2009). The alchemy system for statistical relational AI (Technical Report). University of Washington.
-
(2009)
The Alchemy System for Statistical Relational AI
-
-
Kok, S.1
Summer, M.2
Richardson, M.3
Singla, P.4
Poon, H.5
Lowd, D.6
Wang, J.7
Domingos, P.8
-
31
-
-
84880652569
-
Learning probabilities for noisy first-order rules
-
Learn and join algorithm code.
-
Koller, D., & Pfeffer, A. (1997). Learning probabilities for noisy first-order rules. In IJCAI (pp. 1316-1323). Learn and join algorithm code. http://www.cs.sfu.ca/~oschulte/jbn/.
-
(1997)
IJCAI
, pp. 1316-1323
-
-
Koller, D.1
Pfeffer, A.2
-
34
-
-
38049174896
-
Efficient weight learning for Markov logic networks
-
Lowd, D., & Domingos, P. (2007). Efficient weight learning for Markov logic networks. In PKDD (pp. 200-211).
-
(2007)
PKDD
, pp. 200-211
-
-
Lowd, D.1
Domingos, P.2
-
36
-
-
34547988135
-
Bottom-up learning of Markov logic network structure
-
New York: ACM
-
Mihalkova, L., & Mooney, R. J. (2007). Bottom-up learning of Markov logic network structure. In ICML (pp. 625-632). New York: ACM.
-
(2007)
ICML
, pp. 625-632
-
-
Mihalkova, L.1
Mooney, R.J.2
-
37
-
-
70350003810
-
Learning first-order probabilistic models with combining rules
-
Natarajan, S., Tadepalli, P., Dietterich, T.G., & Fern, A. (2008). Learning first-order probabilistic models with combining rules. Annals of Mathematics and Artificial Intelligence, 54(1-3), 223-256.
-
(2008)
Annals of Mathematics and Artificial Intelligence
, vol.54
, Issue.1-3
, pp. 223-256
-
-
Natarajan, S.1
Tadepalli, P.2
Dietterich, T.G.3
Fern, A.4
-
40
-
-
0030737325
-
Answering queries from context-sensitive probabilistic knowledge bases
-
PII S0304397596001284
-
Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171(1-2), 147-177. (Pubitemid 127452811)
-
(1997)
Theoretical Computer Science
, vol.171
, Issue.1-2
, pp. 147-177
-
-
Ngo, L.1
Haddawy, P.2
-
42
-
-
84880831450
-
First-order probabilistic inference
-
In G. Gottlob & T. Walsh (Eds.). San Mateo: Morgan Kaufmann
-
Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), IJCAI (pp. 985-991). San Mateo: Morgan Kaufmann.
-
(2003)
IJCAI
, pp. 985-991
-
-
Poole, D.1
-
43
-
-
34547978156
-
Sound and efficient inference with probabilistic and deterministic dependencies
-
Menlo Park: AAAI Press
-
Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In AAAI. Menlo Park: AAAI Press.
-
(2006)
AAAI
-
-
Poon, H.1
Domingos, P.2
-
44
-
-
58449119908
-
Feature generation and selection in multi-relational learning
-
Cambridge: MIT Press, Chap. 8
-
Popescul, A., & Ungar, L. (2007). Feature generation and selection in multi-relational learning. In An introduction to statistical relational learning. Cambridge: MIT Press, Chap. 8.
-
(2007)
An Introduction to Statistical Relational Learning
-
-
Popescul, A.1
Ungar, L.2
-
45
-
-
84949196941
-
Boosting first-order learning
-
Berlin: Springer
-
Quinlan, J. (1996). Boosting first-order learning. In Algorithmic learning theory (pp. 143-155). Berlin: Springer.
-
(1996)
Algorithmic Learning Theory
, pp. 143-155
-
-
Quinlan, J.1
-
47
-
-
51949118201
-
Structure learning in random fields for heart motion abnormality detection
-
Schmidt, M., Murphy, K., Fung, G., & Rosales, R. (2008). Structure learning in random fields for heart motion abnormality detection. In CVPR.
-
(2008)
CVPR
-
-
Schmidt, M.1
Murphy, K.2
Fung, G.3
Rosales, R.4
-
48
-
-
84865207049
-
A tractable pseudo-likelihood function for Bayes Nets applied to relational datasets
-
Schulte, O. (2011). A tractable pseudo-likelihood function for Bayes Nets applied to relational datasets. In SIAM SDM (pp. 462-473).
-
(2011)
SIAM SDM
, pp. 462-473
-
-
Schulte, O.1
-
50
-
-
84865206556
-
Learning directed relational models with recursive dependencies
-
Schulte, O., Khosravi, H., Man, T., & Gao, T. (2011). Learning directed relational models with recursive dependencies. In Inductive logic programming.
-
(2011)
Inductive Logic Programming
-
-
Schulte, O.1
Khosravi, H.2
Man, T.3
Gao, T.4
-
53
-
-
0030212927
-
Theories for mutagenicity: A study in first-order and feature-based induction
-
Srinivasan, A., Muggleton, S. H., Sternberg, M. J. E., & King, R. D. (1996). Theories for mutagenicity: A study in first-order and feature-based induction. Artificial Intelligence, 85(1-2), 277-299. (Pubitemid 126363732)
-
(1996)
Artificial Intelligence
, vol.85
, Issue.1-2 SPEC. ISSUE
, pp. 277-299
-
-
Srinivasana, A.1
Muggleton, S.H.2
Sternberg, M.J.E.3
King, R.D.4
-
54
-
-
1942418618
-
Discriminative probabilistic models for relational data
-
In A. Darwiche & N. Friedman (Eds.). San Mateo: Morgan Kaufmann
-
Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In A. Darwiche & N. Friedman (Eds.), UAI (pp. 485-492). San Mateo: Morgan Kaufmann.
-
(2002)
UAI
, pp. 485-492
-
-
Taskar, B.1
Abbeel, P.2
Koller, D.3
-
55
-
-
84858758192
-
Integrating locally learned causal structures with overlapping variables
-
In D. Koller, D Schuurmans Y Bengio & L Bottou (Eds) Cambridge: MIT Press
-
Tillman, R. E., Danks, D., & Glymour, C. (2008). Integrating locally learned causal structures with overlapping variables. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), NIPS (pp. 1665-1672). Cambridge: MIT Press.
-
(2008)
NIPS
, pp. 1665-1672
-
-
Tillman, R.E.1
Danks, D.2
Glymour, C.3
-
57
-
-
4444306027
-
How to upgrade propositional learners to first-order logic: A case study
-
Berlin: Springer
-
Van Laer, W., & de Raedt, L. (2001). How to upgrade propositional learners to first-order logic: A case study. In Relational data mining. Berlin: Springer.
-
(2001)
Relational Data Mining
-
-
Van Laer, W.1
De Raedt, L.2
-
58
-
-
0029204108
-
On the complexity of bounded-variable queries
-
New York: ACM
-
Vardi, M. Y. (1995). On the complexity of bounded-variable queries. In PODS (pp. 266-276). New York: ACM.
-
(1995)
PODS
, pp. 266-276
-
-
Vardi, M.Y.1
-
59
-
-
84972347653
-
From knowledge bases to decision models
-
Wellman, M. P., Breese, J. S., & Goldman, R. P. (1992). From knowledge bases to decision models. Knowledge Engineering Review, 7, 35-53.
-
(1992)
Knowledge Engineering Review
, vol.7
, pp. 35-53
-
-
Wellman, M.P.1
Breese, J.S.2
Goldman, R.P.3
-
60
-
-
44649122147
-
Exploring the power of heuristics and links in multi-relational data mining
-
DOI 10.1007/978-3-540-68123-6-2, Foundations of Intelligent Systems - 17th International Symposium, ISMIS 2008, Proceedings
-
Yin, X., & Han, J. (2008). Exploring the power of heuristics and links in multi-relational data mining. In ISMIS' 08: Proceedings of the 17th international conference on foundations of intelligent systems (pp. 17-27). Berlin: Springer. (Pubitemid 351775874)
-
(2008)
Lecture Notes in Computer Science LNAI (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4994
, pp. 17-27
-
-
Yin, X.1
Han, J.2
-
61
-
-
33745120787
-
CrossMine: Efficient classification across multiple database relations
-
DOI 10.1007/11615576-9, Constraint-Based Mining and Inductive Databases - European Workshop on Inductive Databases and Constraint Based Mining, Revised Selected Papers
-
Yin, X., Han, J., Yang, J., & Yu, P. S. (2004). Crossmine: Efficient classification across multiple database relations. In Constraint-based mining and inductive databases (pp. 172-195). (Pubitemid 43900824)
-
(2006)
Lecture Notes in Computer Science LNAI (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3848
, pp. 172-195
-
-
Yin, X.1
Han, J.2
Yang, J.3
Yu, P.S.4
|