메뉴 건너뛰기




Volumn 88, Issue 3, 2012, Pages 331-368

Learning graphical models for relational data via lattice search

Author keywords

Bayes nets; Graphical models; Markov logic networks; Statistical relational learning

Indexed keywords

BAYES NET; COMPLEMENTARY PROBLEMS; FIRST ORDER LOGIC; GRAPHICAL MODEL; MACHINE LEARNING APPLICATIONS; MAIN TASKS; MARKOV LOGIC NETWORKS; NON-BINARY; PREDICTIVE ACCURACY; RELATIONAL DATA; RELATIONAL DATABASE; RICHARDSON; SEARCH SPACES; SMALL DATA SET; STATE-OF-THE-ART ALGORITHMS; STATISTICAL-RELATIONAL LEARNING;

EID: 84865227776     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5289-4     Document Type: Article
Times cited : (24)

References (61)
  • 5
    • 70350574561 scopus 로고    scopus 로고
    • Exploring optimization of semantic relationship graph for multi-relational Bayesian classification
    • Chen, H., Liu, H., Han, J., & Yin, X. (2009). Exploring optimization of semantic relationship graph for multi-relational Bayesian classification. Decision Support Systems, 48(1), 112-121.
    • (2009) Decision Support Systems , vol.48 , Issue.1 , pp. 112-121
    • Chen, H.1    Liu, H.2    Han, J.3    Yin, X.4
  • 6
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. (2003). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3, 507-554.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.1
  • 7
    • 33750284507 scopus 로고    scopus 로고
    • CMU The Tetrad Group, Department of Philosophy
    • CMU The Tetrad Group, Department of Philosophy (2008). The Tetrad project: Causal models and statistical data. http://www.phil.cmu.edu/projects/ tetrad/.
    • (2008) The Tetrad Project: Causal Models and Statistical Data
  • 8
    • 53349100683 scopus 로고    scopus 로고
    • Markov logic: A unifying framework for statistical relational learning
    • Cambridge: MIT Press
    • Domingos, P., & Richardson, M. (2007). Markov logic: A unifying framework for statistical relational learning. In Introduction to statistical relational learning. Cambridge: MIT Press.
    • (2007) Introduction to Statistical Relational Learning
    • Domingos, P.1    Richardson, M.2
  • 9
  • 10
    • 77955019302 scopus 로고    scopus 로고
    • On the relationship between logical Bayesian networks and probabilistic logic programming based on the distribution semantics
    • In L. De Raedt (Ed.). ILP). Berlin: Springer
    • Fierens, D. (2009). On the relationship between logical Bayesian networks and probabilistic logic programming based on the distribution semantics. In L. De Raedt (Ed.), Lecture notes in computer science: Vol. 5989. ILP (pp. 17-24). Berlin: Springer.
    • (2009) Lecture Notes in Computer Science , vol.5989 , pp. 17-24
    • Fierens, D.1
  • 13
    • 38049156405 scopus 로고    scopus 로고
    • A method for multi-relational classification using single and multifeature aggregation functions
    • Frank, R., Moser, F., & Ester, M. (2007). A method for multi-relational classification using single and multifeature aggregation functions. In PKDD (pp. 430-437).
    • (2007) PKDD , pp. 430-437
    • Frank, R.1    Moser, F.2    Ester, M.3
  • 14
    • 84880688943 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • Berlin: Springer
    • Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In IJCAI (pp. 1300-1309). Berlin: Springer.
    • (1999) IJCAI , pp. 1300-1309
    • Friedman, N.1    Getoor, L.2    Koller, D.3    Pfeffer, A.4
  • 15
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82(1-2), 45-74. (Pubitemid 126374148)
    • (1996) Artificial Intelligence , vol.82 , Issue.1-2 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 16
    • 32044446066 scopus 로고    scopus 로고
    • PRL: A probabilistic relational language
    • DOI 10.1007/s10994-006-5831-3
    • Getoor, L., & Grant, J. (2006). Prl: A probabilistic relational language. Machine Learning, 62(1-2), 7-31. (Pubitemid 43202305)
    • (2006) Machine Learning , vol.62 , Issue.1-2 SPEC. ISSUE , pp. 7-31
    • Getoor, L.1    Grant, J.2
  • 20
    • 56449093057 scopus 로고    scopus 로고
    • Discriminative structure and parameter learning for Markov logic networks
    • In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.). New York: ACM
    • Huynh, T. N., & Mooney, R. J. (2008). Discriminative structure and parameter learning for Markov logic networks. In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), ICML (pp. 416-423). New York: ACM.
    • (2008) ICML , pp. 416-423
    • Huynh, T.N.1    Mooney, R.J.2
  • 21
    • 1942450651 scopus 로고    scopus 로고
    • Linkage and autocorrelation cause feature selection bias in relational learning
    • Jensen, D., & Neville, J. (2002). Linkage and autocorrelation cause feature selection bias in relational learning. In ICML.
    • (2002) ICML
    • Jensen, D.1    Neville, J.2
  • 22
    • 40249101361 scopus 로고    scopus 로고
    • Bayesian logic programming: Theory and tool
    • Cambridge: MIT Press, Chap. 10
    • Kersting, K., & de Raedt, L. (2007). Bayesian logic programming: Theory and tool. In Introduction to statistical relational learning (pp. 291-318). Cambridge: MIT Press, Chap. 10.
    • (2007) Introduction to Statistical Relational Learning , pp. 291-318
    • Kersting, K.1    De Raedt, L.2
  • 25
    • 0020160078 scopus 로고
    • Equivalence of relational algebra and relational calculus query languages having aggregate functions
    • Klug, A. C. (1982). Equivalence of relational algebra and relational calculus query languages having aggregate functions. Journal of the ACM, 29(3), 699-717.
    • (1982) Journal of the ACM , vol.29 , Issue.3 , pp. 699-717
    • Klug, A.C.1
  • 26
    • 31844432693 scopus 로고    scopus 로고
    • Learning the structure of Markov logic networks
    • In L. De Raedt & S. Wrobel (Eds.), New York: ACM
    • Kok, S., & Domingos, P. (2005). Learning the structure of Markov logic networks. In L. De Raedt & S. Wrobel (Eds.), ICML (pp. 441-448). New York: ACM.
    • (2005) ICML
    • Kok, S.1    Domingos, P.2
  • 27
    • 34547980897 scopus 로고    scopus 로고
    • Statistical predicate invention
    • New York: ACM
    • Kok, S., & Domingos, P. (2007). Statistical predicate invention. In ICML (pp. 433-440). New York: ACM.
    • (2007) ICML , pp. 433-440
    • Kok, S.1    Domingos, P.2
  • 28
    • 77958538856 scopus 로고    scopus 로고
    • Learning Markov logic network structure via hypergraph lifting
    • In A. Pohoreckyj Danyluk, L. Bottou, & M. L. Littman (Eds.), New York: ACM
    • Kok, S., & Domingos, P. (2009). Learning Markov logic network structure via hypergraph lifting. In A. Pohoreckyj Danyluk, L. Bottou, & M. L. Littman (Eds.), ICML (pp. 64-71). New York: ACM.
    • (2009) ICML
    • Kok, S.1    Domingos, P.2
  • 29
    • 77956519107 scopus 로고    scopus 로고
    • Learning Markov logic networks using structural motifs
    • Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In ICML 10 (pp. 551-558).
    • (2010) ICML , vol.10 , pp. 551-558
    • Kok, S.1    Domingos, P.2
  • 31
    • 84880652569 scopus 로고    scopus 로고
    • Learning probabilities for noisy first-order rules
    • Learn and join algorithm code.
    • Koller, D., & Pfeffer, A. (1997). Learning probabilities for noisy first-order rules. In IJCAI (pp. 1316-1323). Learn and join algorithm code. http://www.cs.sfu.ca/~oschulte/jbn/.
    • (1997) IJCAI , pp. 1316-1323
    • Koller, D.1    Pfeffer, A.2
  • 34
    • 38049174896 scopus 로고    scopus 로고
    • Efficient weight learning for Markov logic networks
    • Lowd, D., & Domingos, P. (2007). Efficient weight learning for Markov logic networks. In PKDD (pp. 200-211).
    • (2007) PKDD , pp. 200-211
    • Lowd, D.1    Domingos, P.2
  • 36
    • 34547988135 scopus 로고    scopus 로고
    • Bottom-up learning of Markov logic network structure
    • New York: ACM
    • Mihalkova, L., & Mooney, R. J. (2007). Bottom-up learning of Markov logic network structure. In ICML (pp. 625-632). New York: ACM.
    • (2007) ICML , pp. 625-632
    • Mihalkova, L.1    Mooney, R.J.2
  • 40
    • 0030737325 scopus 로고    scopus 로고
    • Answering queries from context-sensitive probabilistic knowledge bases
    • PII S0304397596001284
    • Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171(1-2), 147-177. (Pubitemid 127452811)
    • (1997) Theoretical Computer Science , vol.171 , Issue.1-2 , pp. 147-177
    • Ngo, L.1    Haddawy, P.2
  • 42
    • 84880831450 scopus 로고    scopus 로고
    • First-order probabilistic inference
    • In G. Gottlob & T. Walsh (Eds.). San Mateo: Morgan Kaufmann
    • Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), IJCAI (pp. 985-991). San Mateo: Morgan Kaufmann.
    • (2003) IJCAI , pp. 985-991
    • Poole, D.1
  • 43
    • 34547978156 scopus 로고    scopus 로고
    • Sound and efficient inference with probabilistic and deterministic dependencies
    • Menlo Park: AAAI Press
    • Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In AAAI. Menlo Park: AAAI Press.
    • (2006) AAAI
    • Poon, H.1    Domingos, P.2
  • 44
    • 58449119908 scopus 로고    scopus 로고
    • Feature generation and selection in multi-relational learning
    • Cambridge: MIT Press, Chap. 8
    • Popescul, A., & Ungar, L. (2007). Feature generation and selection in multi-relational learning. In An introduction to statistical relational learning. Cambridge: MIT Press, Chap. 8.
    • (2007) An Introduction to Statistical Relational Learning
    • Popescul, A.1    Ungar, L.2
  • 45
    • 84949196941 scopus 로고    scopus 로고
    • Boosting first-order learning
    • Berlin: Springer
    • Quinlan, J. (1996). Boosting first-order learning. In Algorithmic learning theory (pp. 143-155). Berlin: Springer.
    • (1996) Algorithmic Learning Theory , pp. 143-155
    • Quinlan, J.1
  • 47
    • 51949118201 scopus 로고    scopus 로고
    • Structure learning in random fields for heart motion abnormality detection
    • Schmidt, M., Murphy, K., Fung, G., & Rosales, R. (2008). Structure learning in random fields for heart motion abnormality detection. In CVPR.
    • (2008) CVPR
    • Schmidt, M.1    Murphy, K.2    Fung, G.3    Rosales, R.4
  • 48
    • 84865207049 scopus 로고    scopus 로고
    • A tractable pseudo-likelihood function for Bayes Nets applied to relational datasets
    • Schulte, O. (2011). A tractable pseudo-likelihood function for Bayes Nets applied to relational datasets. In SIAM SDM (pp. 462-473).
    • (2011) SIAM SDM , pp. 462-473
    • Schulte, O.1
  • 53
    • 0030212927 scopus 로고    scopus 로고
    • Theories for mutagenicity: A study in first-order and feature-based induction
    • Srinivasan, A., Muggleton, S. H., Sternberg, M. J. E., & King, R. D. (1996). Theories for mutagenicity: A study in first-order and feature-based induction. Artificial Intelligence, 85(1-2), 277-299. (Pubitemid 126363732)
    • (1996) Artificial Intelligence , vol.85 , Issue.1-2 SPEC. ISSUE , pp. 277-299
    • Srinivasana, A.1    Muggleton, S.H.2    Sternberg, M.J.E.3    King, R.D.4
  • 54
    • 1942418618 scopus 로고    scopus 로고
    • Discriminative probabilistic models for relational data
    • In A. Darwiche & N. Friedman (Eds.). San Mateo: Morgan Kaufmann
    • Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In A. Darwiche & N. Friedman (Eds.), UAI (pp. 485-492). San Mateo: Morgan Kaufmann.
    • (2002) UAI , pp. 485-492
    • Taskar, B.1    Abbeel, P.2    Koller, D.3
  • 55
    • 84858758192 scopus 로고    scopus 로고
    • Integrating locally learned causal structures with overlapping variables
    • In D. Koller, D Schuurmans Y Bengio & L Bottou (Eds) Cambridge: MIT Press
    • Tillman, R. E., Danks, D., & Glymour, C. (2008). Integrating locally learned causal structures with overlapping variables. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), NIPS (pp. 1665-1672). Cambridge: MIT Press.
    • (2008) NIPS , pp. 1665-1672
    • Tillman, R.E.1    Danks, D.2    Glymour, C.3
  • 57
    • 4444306027 scopus 로고    scopus 로고
    • How to upgrade propositional learners to first-order logic: A case study
    • Berlin: Springer
    • Van Laer, W., & de Raedt, L. (2001). How to upgrade propositional learners to first-order logic: A case study. In Relational data mining. Berlin: Springer.
    • (2001) Relational Data Mining
    • Van Laer, W.1    De Raedt, L.2
  • 58
    • 0029204108 scopus 로고
    • On the complexity of bounded-variable queries
    • New York: ACM
    • Vardi, M. Y. (1995). On the complexity of bounded-variable queries. In PODS (pp. 266-276). New York: ACM.
    • (1995) PODS , pp. 266-276
    • Vardi, M.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.