메뉴 건너뛰기




Volumn 3625, Issue , 2005, Pages 121-135

Logical Bayesian networks and their relation to other probabilistic logical models

Author keywords

Bayesian Logic Programs; Bayesian networks; Knowledge representation; Probabilistic Relational Models; Probabilistic logical models

Indexed keywords

DATA STRUCTURES; KNOWLEDGE ACQUISITION; KNOWLEDGE REPRESENTATION; LOGIC PROGRAMMING; PROBABILISTIC LOGICS;

EID: 26944483138     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11536314_8     Document Type: Conference Paper
Times cited : (31)

References (43)
  • 1
    • 0032046101 scopus 로고    scopus 로고
    • 'Classical' negation in nonmonotonic reasoning and logic programming
    • J. Alferes, L. Pereira, and T. Przymusinski. 'Classical' negation in Nonmonotonic Reasoning and Logic Programming. Journal of Automated Reasoning, 20:107-142, 1998.
    • (1998) Journal of Automated Reasoning , vol.20 , pp. 107-142
    • Alferes, J.1    Pereira, L.2    Przymusinski, T.3
  • 5
    • 0032069371 scopus 로고    scopus 로고
    • Top-down induction of first order logical decision trees
    • June
    • H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. Artificial Intelligence, 101(1-2):285-297, June 1998.
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 285-297
    • Blockeel, H.1    De Raedt, L.2
  • 7
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using bayesian belief networks
    • G. F. Cooper. The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2-3):393-405, 1990.
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 9
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2001.
    • (2001) Machine Learning , vol.44 , Issue.3 , pp. 245-271
    • Cussens, J.1
  • 14
    • 0041779094 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • S. Džeroski and N. Lavrač, editors, Springer-Verlag
    • L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models. In S. Džeroski and N. Lavrač, editors, Relational Data Mining, pages 307-334. Springer-Verlag, 2001.
    • (2001) Relational Data Mining , pp. 307-334
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Pfeffer, A.4
  • 20
    • 35248832819 scopus 로고    scopus 로고
    • Efficient em learning with tabulation for parameterized logic programs
    • Proceedings of the 1st International Conference on Computational Logic (CL-2000)
    • Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized logic programs. In Proceedings of the 1st International Conference on Computational Logic (CL-2000), volume 1861 of Lecture Notes in Artificial Intelligence, pages 269-294, 2000.
    • (2000) Lecture Notes in Artificial Intelligence , vol.1861 , pp. 269-294
    • Kameya, Y.1    Sato, T.2
  • 23
    • 9444234690 scopus 로고    scopus 로고
    • Bayesian logic programs
    • Institute for Computer Science, University of Freiburg, Germany, April
    • K. Kersting and L. De Raedt. Bayesian logic programs. Technical Report 151, Institute for Computer Science, University of Freiburg, Germany, April 2001.
    • (2001) Technical Report , vol.151
    • Kersting, K.1    De Raedt, L.2
  • 25
    • 12244270144 scopus 로고    scopus 로고
    • Basic principles of learning bayesian logic programs
    • Institute for Computer Science, University of Freiburg, Germany, June
    • K. Kersting and L. De Raedt. Basic principles of learning bayesian logic programs. Technical Report 174, Institute for Computer Science, University of Freiburg, Germany, June 2002.
    • (2002) Technical Report , vol.174
    • Kersting, K.1    De Raedt, L.2
  • 30
    • 0002205343 scopus 로고    scopus 로고
    • Stochastic logic programs
    • L. de Raedt, editor, IOS Press
    • S. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in Inductive Logic Programming, pages 254-264. IOS Press, 1996.
    • (1996) Advances in Inductive Logic Programming , pp. 254-264
    • Muggleton, S.1
  • 33
    • 0030737325 scopus 로고    scopus 로고
    • Answering queries from context-sensitive probabilistic knowledge bases
    • L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171(1-2):147-177, 1997.
    • (1997) Theoretical Computer Science , vol.171 , Issue.1-2 , pp. 147-177
    • Ngo, L.1    Haddawy, P.2
  • 34
    • 0027702434 scopus 로고
    • Probabilistic Horn abduction and Bayesian networks
    • D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64:81-129, 1993.
    • (1993) Artificial Intelligence , vol.64 , pp. 81-129
    • Poole, D.1
  • 35
    • 0031187203 scopus 로고    scopus 로고
    • The Independent Choice Logic for modelling multiple agents under uncertainty
    • D. Poole. The Independent Choice Logic for modelling multiple agents under uncertainty. Artificial Intelligence, 94(1-2):5- 56, 1997.
    • (1997) Artificial Intelligence , vol.94 , Issue.1-2 , pp. 5-56
    • Poole, D.1
  • 36
    • 14744279342 scopus 로고    scopus 로고
    • Markov logic networks
    • Department of Computer Science, University of Washington
    • M. Richardson and P. Domingos. Markov Logic Networks. Technical report, Department of Computer Science, University of Washington, 2004.
    • (2004) Technical Report
    • Richardson, M.1    Domingos, P.2
  • 40
    • 4444281941 scopus 로고    scopus 로고
    • Parameter learning of logic programs for symbolic-statistical modeling
    • T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-statistical modeling. Journal of Artificial Intelligence Research, 15:391-454, 2001.
    • (2001) Journal of Artificial Intelligence Research , vol.15 , pp. 391-454
    • Sato, T.1    Kameya, Y.2
  • 41
    • 71149116148 scopus 로고
    • The well-founded semantics for general logic programs
    • A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 38(3), 1991.
    • (1991) Journal of the ACM , vol.38 , Issue.3
    • Van Gelder, A.1    Ross, K.2    Schlipf, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.