-
5
-
-
0032069371
-
Top-down induction of first order logical decision trees
-
June
-
H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. Artificial Intelligence, 101(1-2):285-297, June 1998.
-
(1998)
Artificial Intelligence
, vol.101
, Issue.1-2
, pp. 285-297
-
-
Blockeel, H.1
De Raedt, L.2
-
7
-
-
0025401005
-
The computational complexity of probabilistic inference using bayesian belief networks
-
G. F. Cooper. The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2-3):393-405, 1990.
-
(1990)
Artificial Intelligence
, vol.42
, Issue.2-3
, pp. 393-405
-
-
Cooper, G.F.1
-
8
-
-
2342490300
-
Stochastic logic programs: Sampling, inference and applications
-
San Francisco, CA, . Morgan Kaufmann
-
J. Cussens. Stochastic logic programs: Sampling, inference and applications. In Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 115-122, San Francisco, CA, 2000. Morgan Kaufmann.
-
(2000)
Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000)
, pp. 115-122
-
-
Cussens, J.1
-
9
-
-
0035451897
-
Parameter estimation in stochastic logic programs
-
J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning, 44(3):245-271, 2001.
-
(2001)
Machine Learning
, vol.44
, Issue.3
, pp. 245-271
-
-
Cussens, J.1
-
11
-
-
22944462371
-
Learning, logic, and probability: A unified view
-
Porto, Portugal, Invited paper
-
P. Domingos. Learning, logic, and probability: A unified view. In Proceedings of 14th International Conference on Inductive Logic Pogramming (ILP-2004), Porto, Portugal, page 359, 2004. Invited paper.
-
(2004)
Proceedings of 14th International Conference on Inductive Logic Pogramming (ILP-2004)
, pp. 359
-
-
Domingos, P.1
-
12
-
-
26944499181
-
Logical bayesian networks
-
Seattle, WA, USA
-
D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon. Logical bayesian networks. In Proceedings of the 3rd Workshop on Multi-Relational Data Mining (MRDM-2004), Seattle, WA, USA, pages 19-30, 2004.
-
(2004)
Proceedings of the 3rd Workshop on Multi-Relational Data Mining (MRDM-2004)
, pp. 19-30
-
-
Fierens, D.1
Blockeel, H.2
Bruynooghe, M.3
Ramon, J.4
-
13
-
-
84880688943
-
Learning probabilistic relational models
-
N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-1999), pages 1300-1309, 1999.
-
(1999)
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-1999)
, pp. 1300-1309
-
-
Friedman, N.1
Getoor, L.2
Koller, D.3
Pfeffer, A.4
-
14
-
-
0041779094
-
Learning probabilistic relational models
-
S. Džeroski and N. Lavrač, editors, Springer-Verlag
-
L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models. In S. Džeroski and N. Lavrač, editors, Relational Data Mining, pages 307-334. Springer-Verlag, 2001.
-
(2001)
Relational Data Mining
, pp. 307-334
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
-
15
-
-
16344373871
-
Learning probabilistic models of relational structure
-
Morgan Kaufmann, San Francisco, CA
-
L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of relational structure. In Proc. 18th International Conf. on Machine Learning (ICML-2001), pages 170-177. Morgan Kaufmann, San Francisco, CA, 2001.
-
(2001)
Proc. 18th International Conf. on Machine Learning (ICML-2001)
, pp. 170-177
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Taskar, B.4
-
16
-
-
0141496151
-
Learning probabilistic models of link structure
-
L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link structure. Journal of Machine Learning Research, 3:679-707, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 679-707
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Taskar, B.4
-
18
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency Networks for Inference, Collaborative Filtering, and Data Visualization. Journal of Machine Learning Research, 1:49-75, 2000.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
20
-
-
35248832819
-
Efficient em learning with tabulation for parameterized logic programs
-
Proceedings of the 1st International Conference on Computational Logic (CL-2000)
-
Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized logic programs. In Proceedings of the 1st International Conference on Computational Logic (CL-2000), volume 1861 of Lecture Notes in Artificial Intelligence, pages 269-294, 2000.
-
(2000)
Lecture Notes in Artificial Intelligence
, vol.1861
, pp. 269-294
-
-
Kameya, Y.1
Sato, T.2
-
23
-
-
9444234690
-
Bayesian logic programs
-
Institute for Computer Science, University of Freiburg, Germany, April
-
K. Kersting and L. De Raedt. Bayesian logic programs. Technical Report 151, Institute for Computer Science, University of Freiburg, Germany, April 2001.
-
(2001)
Technical Report
, vol.151
-
-
Kersting, K.1
De Raedt, L.2
-
25
-
-
12244270144
-
Basic principles of learning bayesian logic programs
-
Institute for Computer Science, University of Freiburg, Germany, June
-
K. Kersting and L. De Raedt. Basic principles of learning bayesian logic programs. Technical Report 174, Institute for Computer Science, University of Freiburg, Germany, June 2002.
-
(2002)
Technical Report
, vol.174
-
-
Kersting, K.1
De Raedt, L.2
-
26
-
-
18544371909
-
Probabilistic logic learning
-
S. Džeroski and L. De Raedt, editors
-
K. Kersting and L. De Raedt. Probabilistic logic learning. In S. Džeroski and L. De Raedt, editors, SIGKDD Explorations, special issue on Multi-Relational Data Mining, volume 5(1), pages 31-48, 2003.
-
(2003)
SIGKDD Explorations, Special Issue on Multi-relational Data Mining
, vol.5
, Issue.1
, pp. 31-48
-
-
Kersting, K.1
De Raedt, L.2
-
30
-
-
0002205343
-
Stochastic logic programs
-
L. de Raedt, editor, IOS Press
-
S. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in Inductive Logic Programming, pages 254-264. IOS Press, 1996.
-
(1996)
Advances in Inductive Logic Programming
, pp. 254-264
-
-
Muggleton, S.1
-
33
-
-
0030737325
-
Answering queries from context-sensitive probabilistic knowledge bases
-
L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science, 171(1-2):147-177, 1997.
-
(1997)
Theoretical Computer Science
, vol.171
, Issue.1-2
, pp. 147-177
-
-
Ngo, L.1
Haddawy, P.2
-
34
-
-
0027702434
-
Probabilistic Horn abduction and Bayesian networks
-
D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64:81-129, 1993.
-
(1993)
Artificial Intelligence
, vol.64
, pp. 81-129
-
-
Poole, D.1
-
35
-
-
0031187203
-
The Independent Choice Logic for modelling multiple agents under uncertainty
-
D. Poole. The Independent Choice Logic for modelling multiple agents under uncertainty. Artificial Intelligence, 94(1-2):5- 56, 1997.
-
(1997)
Artificial Intelligence
, vol.94
, Issue.1-2
, pp. 5-56
-
-
Poole, D.1
-
36
-
-
14744279342
-
Markov logic networks
-
Department of Computer Science, University of Washington
-
M. Richardson and P. Domingos. Markov Logic Networks. Technical report, Department of Computer Science, University of Washington, 2004.
-
(2004)
Technical Report
-
-
Richardson, M.1
Domingos, P.2
-
40
-
-
4444281941
-
Parameter learning of logic programs for symbolic-statistical modeling
-
T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-statistical modeling. Journal of Artificial Intelligence Research, 15:391-454, 2001.
-
(2001)
Journal of Artificial Intelligence Research
, vol.15
, pp. 391-454
-
-
Sato, T.1
Kameya, Y.2
-
41
-
-
71149116148
-
The well-founded semantics for general logic programs
-
A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 38(3), 1991.
-
(1991)
Journal of the ACM
, vol.38
, Issue.3
-
-
Van Gelder, A.1
Ross, K.2
Schlipf, J.3
-
43
-
-
22944433186
-
First order random forests with complex aggregates
-
R. Camacho, R. King, and A. Srinivasan, editors, Springer
-
C. Vens, A. Van Assche, H. Blockeel, and S. Džeroski. First order random forests with complex aggregates. In R. Camacho, R. King, and A. Srinivasan, editors, Proceedings of the 14th International Conference on Inductive Logic Programming, pages 323-340. Springer, 2004.
-
(2004)
Proceedings of the 14th International Conference on Inductive Logic Programming
, pp. 323-340
-
-
Vens, C.1
Van Assche, A.2
Blockeel, H.3
Džeroski, S.4
|