-
1
-
-
51949100753
-
-
cs.ubc.ca/ schmidtm/Software/minFunc.html
-
cs.ubc.ca/ schmidtm/Software/minFunc.html.
-
-
-
-
2
-
-
34948875827
-
Unsupervised segmentation of objects using efficient learning
-
H. Arora, N. Loeff, D. Forsyth, and N. Ahuja. Unsupervised segmentation of objects using efficient learning. In CVPR, 2007.
-
(2007)
CVPR
-
-
Arora, H.1
Loeff, N.2
Forsyth, D.3
Ahuja, N.4
-
4
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. Royal Statistical Society B, 36:192-225, 1974.
-
(1974)
J. Royal Statistical Society B
, vol.36
, pp. 192-225
-
-
Besag, J.1
-
5
-
-
0000582521
-
Statistical analysis of non-lattice data
-
J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179-195, 1975).
-
(1975)
The Statistician
, vol.24
, Issue.3
, pp. 179-195
-
-
Besag, J.1
-
6
-
-
0032045727
-
A pixel dissimilarity measure that is insensitive to image sampling
-
S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to image sampling. PAMI, 20(4):401-406, 1998.
-
(1998)
PAMI
, vol.20
, Issue.4
, pp. 401-406
-
-
Birchfield, S.1
Tomasi, C.2
-
7
-
-
33750924843
-
Hidden Markov Models for images
-
Technical report, Language and Media Processing Laboratory LAMP, University of Maryland
-
D. DeMenthon, M. Vuilleumier, and D. Doermann. Hidden Markov Models for images. Technical report, Language and Media Processing Laboratory (LAMP), University of Maryland, 2000.
-
(2000)
-
-
DeMenthon, D.1
Vuilleumier, M.2
Doermann, D.3
-
8
-
-
0028429838
-
An empirical study of the simulation of various models used for images
-
A. J. Gray, J. W. Kay, and D. M. Titterington. An empirical study of the simulation of various models used for images. PAMI, 16(5):507-513, 1994.
-
(1994)
PAMI
, vol.16
, Issue.5
, pp. 507-513
-
-
Gray, A.J.1
Kay, J.W.2
Titterington, D.M.3
-
9
-
-
34147113322
-
Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure
-
A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In ICPR, 2006.
-
(2006)
ICPR
-
-
Klaus, A.1
Sormann, M.2
Karner, K.3
-
13
-
-
24644467818
-
Fields of experts: A framework for learning image priors
-
S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In CVPR, 2005.
-
(2005)
CVPR
-
-
Roth, S.1
Black, M.J.2
-
14
-
-
39049167044
-
3-D depth reconstruction from a single still image
-
A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth reconstruction from a single still image. IJCV, 2007.
-
(2007)
IJCV
-
-
Saxena, A.1
Chung, S.H.2
Ng, A.Y.3
-
15
-
-
84880854887
-
Depth estimation using monocular and stereo cues
-
A. Saxena, J. Schulte, and A. Y. Ng. Depth estimation using monocular and stereo cues. In IJCAI, 2007.
-
(2007)
IJCAI
-
-
Saxena, A.1
Schulte, J.2
Ng, A.Y.3
-
16
-
-
34948831560
-
Learning conditional random fields for stereo
-
D. Scharstein and C. Pal. Learning conditional random fields for stereo. In CVPR, 2007.
-
(2007)
CVPR
-
-
Scharstein, D.1
Pal, C.2
-
17
-
-
0036537472
-
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
-
D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1-3):7-42, 2002.
-
(2002)
IJCV
, vol.47
, Issue.1-3
, pp. 7-42
-
-
Scharstein, D.1
Szeliski, R.2
-
18
-
-
34948821220
-
Learning Gaussian conditional random fields for low-level vision
-
M. Tappen, C. Liu, E. Adelson, and W. Freeman. Learning Gaussian conditional random fields for low-level vision. In CVPR, 2007.
-
(2007)
CVPR
-
-
Tappen, M.1
Liu, C.2
Adelson, E.3
Freeman, W.4
-
19
-
-
34948890052
-
Utilizing variational optimization to learn markov random fields
-
M. F. Tappen. Utilizing variational optimization to learn markov random fields. In CVPR, 2007.
-
(2007)
CVPR
-
-
Tappen, M.F.1
-
20
-
-
25844452835
-
Recovering intrinsic images from a single image
-
M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic images from a single image. PAMI, 27(9):1459-1472, 2005.
-
(2005)
PAMI
, vol.27
, Issue.9
, pp. 1459-1472
-
-
Tappen, M.F.1
Freeman, W.T.2
Adelson, E.H.3
-
22
-
-
35148861156
-
What makes a good model of natural images?
-
Y. Weiss and W. T. Freeman. What makes a good model of natural images? In CVPR, 2007.
-
(2007)
CVPR
-
-
Weiss, Y.1
Freeman, W.T.2
-
23
-
-
0031270256
-
Prior learning and gibbs reaction-diffusion
-
S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. PAMI, 19(11):1236-1250, 1997.
-
(1997)
PAMI
, vol.19
, Issue.11
, pp. 1236-1250
-
-
Zhu, S.C.1
Mumford, D.2
|