메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Who killed the directed model?

Author keywords

[No Author keywords available]

Indexed keywords

A-PRIORI; COMPUTATIONAL COSTS; DIRECTED MODELS; LOW-LEVEL VISION; MARKOV RANDOM FIELDS; MAXIMUM LIKELIHOOD LEARNING; NATURAL IMAGES; PRIOR DISTRIBUTIONS; STEREO-DISPARITY; TRAINING TIME;

EID: 51949084373     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587817     Document Type: Conference Paper
Times cited : (23)

References (23)
  • 1
    • 51949100753 scopus 로고    scopus 로고
    • cs.ubc.ca/ schmidtm/Software/minFunc.html
    • cs.ubc.ca/ schmidtm/Software/minFunc.html.
  • 2
    • 34948875827 scopus 로고    scopus 로고
    • Unsupervised segmentation of objects using efficient learning
    • H. Arora, N. Loeff, D. Forsyth, and N. Ahuja. Unsupervised segmentation of objects using efficient learning. In CVPR, 2007.
    • (2007) CVPR
    • Arora, H.1    Loeff, N.2    Forsyth, D.3    Ahuja, N.4
  • 4
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. Royal Statistical Society B, 36:192-225, 1974.
    • (1974) J. Royal Statistical Society B , vol.36 , pp. 192-225
    • Besag, J.1
  • 5
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179-195, 1975).
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 6
    • 0032045727 scopus 로고    scopus 로고
    • A pixel dissimilarity measure that is insensitive to image sampling
    • S. Birchfield and C. Tomasi. A pixel dissimilarity measure that is insensitive to image sampling. PAMI, 20(4):401-406, 1998.
    • (1998) PAMI , vol.20 , Issue.4 , pp. 401-406
    • Birchfield, S.1    Tomasi, C.2
  • 7
    • 33750924843 scopus 로고    scopus 로고
    • Hidden Markov Models for images
    • Technical report, Language and Media Processing Laboratory LAMP, University of Maryland
    • D. DeMenthon, M. Vuilleumier, and D. Doermann. Hidden Markov Models for images. Technical report, Language and Media Processing Laboratory (LAMP), University of Maryland, 2000.
    • (2000)
    • DeMenthon, D.1    Vuilleumier, M.2    Doermann, D.3
  • 8
    • 0028429838 scopus 로고
    • An empirical study of the simulation of various models used for images
    • A. J. Gray, J. W. Kay, and D. M. Titterington. An empirical study of the simulation of various models used for images. PAMI, 16(5):507-513, 1994.
    • (1994) PAMI , vol.16 , Issue.5 , pp. 507-513
    • Gray, A.J.1    Kay, J.W.2    Titterington, D.M.3
  • 9
    • 34147113322 scopus 로고    scopus 로고
    • Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure
    • A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In ICPR, 2006.
    • (2006) ICPR
    • Klaus, A.1    Sormann, M.2    Karner, K.3
  • 13
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In CVPR, 2005.
    • (2005) CVPR
    • Roth, S.1    Black, M.J.2
  • 14
    • 39049167044 scopus 로고    scopus 로고
    • 3-D depth reconstruction from a single still image
    • A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth reconstruction from a single still image. IJCV, 2007.
    • (2007) IJCV
    • Saxena, A.1    Chung, S.H.2    Ng, A.Y.3
  • 15
    • 84880854887 scopus 로고    scopus 로고
    • Depth estimation using monocular and stereo cues
    • A. Saxena, J. Schulte, and A. Y. Ng. Depth estimation using monocular and stereo cues. In IJCAI, 2007.
    • (2007) IJCAI
    • Saxena, A.1    Schulte, J.2    Ng, A.Y.3
  • 16
    • 34948831560 scopus 로고    scopus 로고
    • Learning conditional random fields for stereo
    • D. Scharstein and C. Pal. Learning conditional random fields for stereo. In CVPR, 2007.
    • (2007) CVPR
    • Scharstein, D.1    Pal, C.2
  • 17
    • 0036537472 scopus 로고    scopus 로고
    • A taxonomy and evaluation of dense two-frame stereo correspondence algorithms
    • D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1-3):7-42, 2002.
    • (2002) IJCV , vol.47 , Issue.1-3 , pp. 7-42
    • Scharstein, D.1    Szeliski, R.2
  • 18
    • 34948821220 scopus 로고    scopus 로고
    • Learning Gaussian conditional random fields for low-level vision
    • M. Tappen, C. Liu, E. Adelson, and W. Freeman. Learning Gaussian conditional random fields for low-level vision. In CVPR, 2007.
    • (2007) CVPR
    • Tappen, M.1    Liu, C.2    Adelson, E.3    Freeman, W.4
  • 19
    • 34948890052 scopus 로고    scopus 로고
    • Utilizing variational optimization to learn markov random fields
    • M. F. Tappen. Utilizing variational optimization to learn markov random fields. In CVPR, 2007.
    • (2007) CVPR
    • Tappen, M.F.1
  • 20
    • 25844452835 scopus 로고    scopus 로고
    • Recovering intrinsic images from a single image
    • M. F. Tappen, W. T. Freeman, and E. H. Adelson. Recovering intrinsic images from a single image. PAMI, 27(9):1459-1472, 2005.
    • (2005) PAMI , vol.27 , Issue.9 , pp. 1459-1472
    • Tappen, M.F.1    Freeman, W.T.2    Adelson, E.H.3
  • 22
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • Y. Weiss and W. T. Freeman. What makes a good model of natural images? In CVPR, 2007.
    • (2007) CVPR
    • Weiss, Y.1    Freeman, W.T.2
  • 23
    • 0031270256 scopus 로고    scopus 로고
    • Prior learning and gibbs reaction-diffusion
    • S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. PAMI, 19(11):1236-1250, 1997.
    • (1997) PAMI , vol.19 , Issue.11 , pp. 1236-1250
    • Zhu, S.C.1    Mumford, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.