메뉴 건너뛰기




Volumn , Issue , 2011, Pages 462-473

A tractable pseudo-likelihood function for bayes nets applied to relational data

Author keywords

Bayes Nets; Lattice Search; Pseudo Likelihood; Statistical Relational Learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; SEMANTICS; SPACE DIVISION MULTIPLE ACCESS;

EID: 84865207049     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.40     Document Type: Conference Paper
Times cited : (20)

References (42)
  • 2
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • J. BESAG, Statistical analysis of non-lattice data, The Statistician, 24 (1975), pp. 179-195.
    • (1975) The Statistician , vol.24 , pp. 179-195
    • Besag, J.1
  • 3
    • 0003676303 scopus 로고    scopus 로고
    • Prolog (3rd ed.) Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
    • I. BRATKO, Prolog (3rd ed.): programming for artificial intelligence, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
    • (2001) Programming for Artificial Intelligence
    • Bratko, I.1
  • 8
    • 0002199090 scopus 로고
    • Markov random field image models and their application to computer vision
    • A. Gleason, ed., American Mathematical Society
    • S. GEMAN AND C. GRAFFINE, Markov random field image models and their application to computer vision., in Proceedings of the 1986 International Congress of Mathematicians, A. Gleason, ed., American Mathematical Society, 1987, pp. 1496-1517.
    • (1987) Proceedings of the 1986 International Congress of Mathematicians , pp. 1496-1517
    • Geman, S.1    Graffine, C.2
  • 12
    • 0025535649 scopus 로고
    • An analysis of first-order logics of probability
    • J. Y. HALPERN, An analysis of first-order logics of probability, Artificial Intelligence, 46 (1990), pp. 311-350.
    • (1990) Artificial Intelligence , vol.46 , pp. 311-350
    • Halpern, J.Y.1
  • 14
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. HECKERMAN, D. GEIGER, AND D. CHICKERING, Learning Bayesian networks: The combination of knowledge and statistical data, Machine Learning, 20 (1995), pp. 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 15
    • 0020704913 scopus 로고
    • A simple guide to five normal forms in relational database theory
    • W. KENT, A simple guide to five normal forms in relational database theory, Commun. ACM, 26 (1983), pp. 120-125.
    • (1983) Commun. ACM , vol.26 , pp. 120-125
    • Kent, W.1
  • 19
    • 0020160078 scopus 로고
    • Equivalence of relational algebra and relational calculus query languages having aggregate functions
    • A. C. KLUG, Equivalence of relational algebra and relational calculus query languages having aggregate functions, J. ACM, 29 (1982), pp. 699-717.
    • (1982) J. ACM , vol.29 , pp. 699-717
    • Klug, A.C.1
  • 20
    • 31844432693 scopus 로고    scopus 로고
    • Learning the structure of Markov logic networks
    • L. D. Raedt and S. Wrobel, eds., ACM
    • S. KOK AND P. DOMINGOS, Learning the structure of Markov logic networks, in ICML, L. D. Raedt and S. Wrobel, eds., ACM, 2005, pp. 441-448.
    • (2005) ICML , pp. 441-448
    • Kok, S.1    Domingos, P.2
  • 21
    • 77958538856 scopus 로고    scopus 로고
    • Learning Markov logic network structure via hypergraph lifting
    • A. P. Danyluk, L. Bottou, and M. L. Littman, eds., ACM
    • -, Learning markov logic network structure via hypergraph lifting, in ICML, A. P. Danyluk, L. Bottou, and M. L. Littman, eds., ACM, 2009, pp. 64-71.
    • (2009) ICML , pp. 64-71
    • Kok, S.1    Domingos, P.2
  • 22
    • 84880652569 scopus 로고    scopus 로고
    • Learning probabilities for noisy first-order rules
    • D. KOLLER AND A. PFEFFER, Learning probabilities for noisy first-order rules, in IJCAI, 1997, pp. 1316-1323.
    • (1997) IJCAI , pp. 1316-1323
    • Koller, D.1    Pfeffer, A.2
  • 23
    • 80053222353 scopus 로고    scopus 로고
    • Discovering cyclic causal models by independent components analysis
    • D. A. McAllester and P. Myllymäki, eds., AUAI Press
    • G. LACERDA, P. SPIRTES, J. RAMSEY, AND P. O. HOYER, Discovering cyclic causal models by independent components analysis, in UAI, D. A. McAllester and P. Myllymäki, eds., AUAI Press, 2008, pp. 366-374.
    • (2008) UAI , pp. 366-374
    • Lacerda, G.1    Spirtes, P.2    Ramsey, J.3    Hoyer, P.O.4
  • 25
    • 34547988135 scopus 로고    scopus 로고
    • Bottom-up learning of Markov logic network structure
    • ACM
    • L. MIHALKOVA AND R. J. MOONEY, Bottom-up learning of Markov logic network structure, in ICML, ACM, 2007, pp. 625-632.
    • (2007) ICML , pp. 625-632
    • Mihalkova, L.1    Mooney, R.J.2
  • 26
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • A. W. MOORE AND M. S. LEE, Cached sufficient statistics for efficient machine learning with large datasets, J. Artif. Intell. Res. (JAIR), 8 (1998), pp. 67-91.
    • (1998) J. Artif. Intell. Res. (JAIR) , vol.8 , pp. 67-91
    • Moore, A.W.1    Lee, M.S.2
  • 29
    • 0030737325 scopus 로고    scopus 로고
    • Answering queries from context-sensitive probabilistic knowledge bases
    • L. NGO AND P. HADDAWY, Answering queries from context-sensitive probabilistic knowledge bases, Theor. Comput. Sci., 171 (1997), pp. 147-177.
    • (1997) Theor. Comput. Sci. , vol.171 , pp. 147-177
    • Ngo, L.1    Haddawy, P.2
  • 32
    • 84880831450 scopus 로고    scopus 로고
    • First-order probabilistic inference
    • G. Gottlob and T. Walsh, eds., Morgan Kaufmann
    • D. POOLE, First-order probabilistic inference, in IJCAI, G. Gottlob and T. Walsh, eds., Morgan Kaufmann, 2003, pp. 985-991.
    • (2003) IJCAI , pp. 985-991
    • Poole, D.1
  • 33
    • 13344265612 scopus 로고    scopus 로고
    • Classification with hybrid generative/discriminative models
    • S. Thrun, L. K. Saul, and B. Schölkopf, eds., MIT Press
    • R. RAINA, Y. SHEN, A. Y. NG, AND A. MCCALLUM, Classification with hybrid generative/discriminative models, in NIPS, S. Thrun, L. K. Saul, and B. Schölkopf, eds., MIT Press, 2003.
    • (2003) NIPS
    • Raina, R.1    Shen, Y.2    Ng, A.Y.3    McCallum, A.4
  • 34
    • 0040630191 scopus 로고    scopus 로고
    • A discovery algorithm for directed cyclic graphs
    • E. Horvitz and F. V. Jensen, eds., Morgan Kaufmann
    • T. RICHARDSON, A discovery algorithm for directed cyclic graphs, in UAI, E. Horvitz and F. V. Jensen, eds., Morgan Kaufmann, 1996, pp. 454-461.
    • (1996) UAI , pp. 454-461
    • Richardson, T.1
  • 36
    • 1942418618 scopus 로고    scopus 로고
    • Discriminative probabilistic models for relational data
    • A. Darwiche and N. Friedman, eds., Morgan Kaufmann
    • B. TASKAR, P. ABBEEL, AND D. KOLLER, Discriminative probabilistic models for relational data, in UAI, A. Darwiche and N. Friedman, eds., Morgan Kaufmann, 2002, pp. 485-492.
    • (2002) UAI , pp. 485-492
    • Taskar, B.1    Abbeel, P.2    Koller, D.3
  • 38
    • 0029204108 scopus 로고
    • On the complexity of bounded-variable queries
    • ACM Press
    • M. Y. VARDI, On the complexity of bounded-variable queries, in PODS, ACM Press, 1995, pp. 266-276.
    • (1995) PODS , pp. 266-276
    • Vardi, M.Y.1
  • 40
    • 67149088773 scopus 로고    scopus 로고
    • Pseudolikelihood em for within-network relational learning
    • IEEE Computer Society
    • R. XIANG AND J. NEVILLE, Pseudolikelihood em for within-network relational learning, in ICDM, IEEE Computer Society, 2008, pp. 1103-1108.
    • (2008) ICDM , pp. 1103-1108
    • Xiang, R.1    Neville, J.2
  • 41
    • 77951159737 scopus 로고    scopus 로고
    • Multirelational learning with Gaussian processes
    • C. Boutilier, ed.
    • Z. XU, K. KERSTING, AND V. TRESP, Multirelational learning with gaussian processes, in IJCAI, C. Boutilier, ed., 2009, pp. 1309-1314.
    • (2009) IJCAI , pp. 1309-1314
    • Xu, Z.1    Kersting, K.2    Tresp, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.