-
1
-
-
0004150856
-
-
MIT Press, Cambridge, MA, USA
-
F. BACCHUS, Representing and reasoning with probabilistic knowledge: a logical approach to probabilities, MIT Press, Cambridge, MA, USA, 1990.
-
(1990)
Representing and Reasoning with Probabilistic Knowledge: A Logical Approach to Probabilities
-
-
Bacchus, F.1
-
2
-
-
0000582521
-
Statistical analysis of non-lattice data
-
J. BESAG, Statistical analysis of non-lattice data, The Statistician, 24 (1975), pp. 179-195.
-
(1975)
The Statistician
, vol.24
, pp. 179-195
-
-
Besag, J.1
-
3
-
-
0003676303
-
-
Prolog (3rd ed.) Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
-
I. BRATKO, Prolog (3rd ed.): programming for artificial intelligence, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
-
(2001)
Programming for Artificial Intelligence
-
-
Bratko, I.1
-
6
-
-
26944483138
-
-
ILP, S. Kramer and B. Pfahringer, eds., Vol. 3625 of Lecture Notes in Computer Science, Springer
-
D. FIERENS, H. BLOCKEEL, M. BRUYNOOGHE, AND J. RAMON, Logical bayesian networks and their relation to other probabilistic logical models, in ILP, S. Kramer and B. Pfahringer, eds., vol. 3625 of Lecture Notes in Computer Science, Springer, 2005, pp. 121-135.
-
(2005)
Logical Bayesian Networks and their Relation to Other Probabilistic Logical Models
, pp. 121-135
-
-
Fierens, D.1
Blockeel, H.2
Bruynooghe, M.3
Ramon, J.4
-
8
-
-
0002199090
-
Markov random field image models and their application to computer vision
-
A. Gleason, ed., American Mathematical Society
-
S. GEMAN AND C. GRAFFINE, Markov random field image models and their application to computer vision., in Proceedings of the 1986 International Congress of Mathematicians, A. Gleason, ed., American Mathematical Society, 1987, pp. 1496-1517.
-
(1987)
Proceedings of the 1986 International Congress of Mathematicians
, pp. 1496-1517
-
-
Geman, S.1
Graffine, C.2
-
9
-
-
47849098175
-
Probabilistic relational models
-
[11], ch. 5
-
L. GETOOR, N. FRIEDMAN, D. KOLLER, A. PFEFFER, AND B. TASKAR, Probabilistic relational models, in Introduction to Statistical Relational Learning [11], ch. 5, pp. 129-173.
-
Introduction to Statistical Relational Learning
, pp. 129-173
-
-
Getoor, L.1
Friedman, N.2
Koller, D.3
Pfeffer, A.4
Taskar, B.5
-
12
-
-
0025535649
-
An analysis of first-order logics of probability
-
J. Y. HALPERN, An analysis of first-order logics of probability, Artificial Intelligence, 46 (1990), pp. 311-350.
-
(1990)
Artificial Intelligence
, vol.46
, pp. 311-350
-
-
Halpern, J.Y.1
-
13
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
D. HECKERMAN, D. M. CHICKERING, C. MEEK, R. ROUNTHWAITE, C. KADIE, AND P. KAELBLING, Dependency networks for inference, collaborative filtering, and data visualization, Journal of Machine Learning Research, 1 (2000), pp. 49-75.
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
Kaelbling, P.6
-
14
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. HECKERMAN, D. GEIGER, AND D. CHICKERING, Learning Bayesian networks: The combination of knowledge and statistical data, Machine Learning, 20 (1995), pp. 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
15
-
-
0020704913
-
A simple guide to five normal forms in relational database theory
-
W. KENT, A simple guide to five normal forms in relational database theory, Commun. ACM, 26 (1983), pp. 120-125.
-
(1983)
Commun. ACM
, vol.26
, pp. 120-125
-
-
Kent, W.1
-
18
-
-
77958615695
-
Structure learning for Markov logic networks with many descriptive attributes
-
H. KHOSRAVI, O. SCHULTE, T. MAN, X. XU, AND B. BINA, Structure learning for Markov logic networks with many descriptive attributes, in Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI)., 2010, pp. 487-493.
-
(2010)
Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI).
, pp. 487-493
-
-
Khosravi, H.1
Schulte, O.2
Man, T.3
Xu, X.4
Bina, B.5
-
19
-
-
0020160078
-
Equivalence of relational algebra and relational calculus query languages having aggregate functions
-
A. C. KLUG, Equivalence of relational algebra and relational calculus query languages having aggregate functions, J. ACM, 29 (1982), pp. 699-717.
-
(1982)
J. ACM
, vol.29
, pp. 699-717
-
-
Klug, A.C.1
-
20
-
-
31844432693
-
Learning the structure of Markov logic networks
-
L. D. Raedt and S. Wrobel, eds., ACM
-
S. KOK AND P. DOMINGOS, Learning the structure of Markov logic networks, in ICML, L. D. Raedt and S. Wrobel, eds., ACM, 2005, pp. 441-448.
-
(2005)
ICML
, pp. 441-448
-
-
Kok, S.1
Domingos, P.2
-
21
-
-
77958538856
-
Learning Markov logic network structure via hypergraph lifting
-
A. P. Danyluk, L. Bottou, and M. L. Littman, eds., ACM
-
-, Learning markov logic network structure via hypergraph lifting, in ICML, A. P. Danyluk, L. Bottou, and M. L. Littman, eds., ACM, 2009, pp. 64-71.
-
(2009)
ICML
, pp. 64-71
-
-
Kok, S.1
Domingos, P.2
-
22
-
-
84880652569
-
Learning probabilities for noisy first-order rules
-
D. KOLLER AND A. PFEFFER, Learning probabilities for noisy first-order rules, in IJCAI, 1997, pp. 1316-1323.
-
(1997)
IJCAI
, pp. 1316-1323
-
-
Koller, D.1
Pfeffer, A.2
-
23
-
-
80053222353
-
Discovering cyclic causal models by independent components analysis
-
D. A. McAllester and P. Myllymäki, eds., AUAI Press
-
G. LACERDA, P. SPIRTES, J. RAMSEY, AND P. O. HOYER, Discovering cyclic causal models by independent components analysis, in UAI, D. A. McAllester and P. Myllymäki, eds., AUAI Press, 2008, pp. 366-374.
-
(2008)
UAI
, pp. 366-374
-
-
Lacerda, G.1
Spirtes, P.2
Ramsey, J.3
Hoyer, P.O.4
-
24
-
-
56449098139
-
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators
-
New York, NY, USA ACM
-
P. LIANG AND M. I. JORDAN, An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators, in ICML '08: Proceedings of the 25th international conference on Machine learning, New York, NY, USA, 2008, ACM, pp. 584-591.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 584-591
-
-
Liang, P.1
Jordan, M.I.2
-
25
-
-
34547988135
-
Bottom-up learning of Markov logic network structure
-
ACM
-
L. MIHALKOVA AND R. J. MOONEY, Bottom-up learning of Markov logic network structure, in ICML, ACM, 2007, pp. 625-632.
-
(2007)
ICML
, pp. 625-632
-
-
Mihalkova, L.1
Mooney, R.J.2
-
26
-
-
0001828003
-
Cached sufficient statistics for efficient machine learning with large datasets
-
A. W. MOORE AND M. S. LEE, Cached sufficient statistics for efficient machine learning with large datasets, J. Artif. Intell. Res. (JAIR), 8 (1998), pp. 67-91.
-
(1998)
J. Artif. Intell. Res. (JAIR)
, vol.8
, pp. 67-91
-
-
Moore, A.W.1
Lee, M.S.2
-
29
-
-
0030737325
-
Answering queries from context-sensitive probabilistic knowledge bases
-
L. NGO AND P. HADDAWY, Answering queries from context-sensitive probabilistic knowledge bases, Theor. Comput. Sci., 171 (1997), pp. 147-177.
-
(1997)
Theor. Comput. Sci.
, vol.171
, pp. 147-177
-
-
Ngo, L.1
Haddawy, P.2
-
32
-
-
84880831450
-
First-order probabilistic inference
-
G. Gottlob and T. Walsh, eds., Morgan Kaufmann
-
D. POOLE, First-order probabilistic inference, in IJCAI, G. Gottlob and T. Walsh, eds., Morgan Kaufmann, 2003, pp. 985-991.
-
(2003)
IJCAI
, pp. 985-991
-
-
Poole, D.1
-
33
-
-
13344265612
-
Classification with hybrid generative/discriminative models
-
S. Thrun, L. K. Saul, and B. Schölkopf, eds., MIT Press
-
R. RAINA, Y. SHEN, A. Y. NG, AND A. MCCALLUM, Classification with hybrid generative/discriminative models, in NIPS, S. Thrun, L. K. Saul, and B. Schölkopf, eds., MIT Press, 2003.
-
(2003)
NIPS
-
-
Raina, R.1
Shen, Y.2
Ng, A.Y.3
McCallum, A.4
-
34
-
-
0040630191
-
A discovery algorithm for directed cyclic graphs
-
E. Horvitz and F. V. Jensen, eds., Morgan Kaufmann
-
T. RICHARDSON, A discovery algorithm for directed cyclic graphs, in UAI, E. Horvitz and F. V. Jensen, eds., Morgan Kaufmann, 1996, pp. 454-461.
-
(1996)
UAI
, pp. 454-461
-
-
Richardson, T.1
-
35
-
-
0003614273
-
-
MIT Press
-
P. SPIRTES, C. GLYMOUR, AND R. SCHEINES, Causation, Prediction, and Search, MIT Press, 2000.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
36
-
-
1942418618
-
Discriminative probabilistic models for relational data
-
A. Darwiche and N. Friedman, eds., Morgan Kaufmann
-
B. TASKAR, P. ABBEEL, AND D. KOLLER, Discriminative probabilistic models for relational data, in UAI, A. Darwiche and N. Friedman, eds., Morgan Kaufmann, 2002, pp. 485-492.
-
(2002)
UAI
, pp. 485-492
-
-
Taskar, B.1
Abbeel, P.2
Koller, D.3
-
38
-
-
0029204108
-
On the complexity of bounded-variable queries
-
ACM Press
-
M. Y. VARDI, On the complexity of bounded-variable queries, in PODS, ACM Press, 1995, pp. 266-276.
-
(1995)
PODS
, pp. 266-276
-
-
Vardi, M.Y.1
-
39
-
-
84972347653
-
From knowledge bases to decision models
-
M. WELLMAN, J. BREESE, AND R. GOLDMAN, From knowledge bases to decision models, Knowledge Engineering Review, 7 (1992), p. 35-53.
-
(1992)
Knowledge Engineering Review
, vol.7
, pp. 35-53
-
-
Wellman, M.1
Breese, J.2
Goldman, R.3
-
40
-
-
67149088773
-
Pseudolikelihood em for within-network relational learning
-
IEEE Computer Society
-
R. XIANG AND J. NEVILLE, Pseudolikelihood em for within-network relational learning, in ICDM, IEEE Computer Society, 2008, pp. 1103-1108.
-
(2008)
ICDM
, pp. 1103-1108
-
-
Xiang, R.1
Neville, J.2
-
41
-
-
77951159737
-
Multirelational learning with Gaussian processes
-
C. Boutilier, ed.
-
Z. XU, K. KERSTING, AND V. TRESP, Multirelational learning with gaussian processes, in IJCAI, C. Boutilier, ed., 2009, pp. 1309-1314.
-
(2009)
IJCAI
, pp. 1309-1314
-
-
Xu, Z.1
Kersting, K.2
Tresp, V.3
-
42
-
-
33745120787
-
Crossmine: Efficient classification across multiple database relations
-
X. YIN, J. HAN, J. YANG, AND P. S. YU, Crossmine: Efficient classification across multiple database relations, in Constraint-Based Mining and Inductive Databases, 2004, pp. 172-195.
-
(2004)
Constraint-Based Mining and Inductive Databases
, pp. 172-195
-
-
Yin, X.1
Han, J.2
Yang, J.3
Yu, P.S.4
|