메뉴 건너뛰기




Volumn 25, Issue 2, 2012, Pages 208-242

Diverse subgroup set discovery

Author keywords

Diversity; Exceptional model mining; Heuristic search; Pattern selection; Subgroup set discovery

Indexed keywords

BEAM SEARCH; CARDINALITIES; DATA SETS; DISCOVERY ALGORITHM; DIVERSITY; EXHAUSTIVE SEARCH; EXPLORATION AND EXPLOITATION; GENERALISATION; HEURISTIC SEARCH; HEURISTIC SELECTIONS; HYPOTHESIS SPACE; LARGE DATA; MINING ALGORITHMS; PATTERN SELECTION; QUALITY MEASURES; RUNTIMES; SD METHOD; SELECTION METHODS; SUBGROUP DISCOVERY; SUBGROUP SET DISCOVERY; TARGET TYPE;

EID: 84864550632     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0273-y     Document Type: Conference Paper
Times cited : (116)

References (53)
  • 1
    • 70350678698 scopus 로고    scopus 로고
    • Evaluation measures for multi-class subgroup discovery
    • Bled
    • Abudawood T, Flach P (2009) Evaluation measures for multi-class subgroup discovery. In: Proceedings of the ECML/PKDD'09, Bled, pp 35-50
    • (2009) Proceedings of the ECML/PKDD'09 , pp. 35-50
    • Abudawood, T.1    Flach, P.2
  • 2
    • 70349871420 scopus 로고    scopus 로고
    • Fast subgroup discovery for continuous target concepts
    • Prague
    • Atzmüller M, Lemmerich F (2009) Fast subgroup discovery for continuous target concepts. In: Proceedings of ISMIS '09, Prague, pp 35-44
    • (2009) Proceedings of ISMIS '09 , pp. 35-44
    • Atzmüller, M.1    Lemmerich, F.2
  • 3
    • 0001681372 scopus 로고    scopus 로고
    • A statistical theory for quantitative association rules
    • San Diego
    • Aumann Y, Lindell Y (1999) A statistical theory for quantitative association rules. In: Proceedings of KDD'99, San Diego, pp 261-270
    • (1999) Proceedings of KDD'99 , pp. 261-270
    • Aumann, Y.1    Lindell, Y.2
  • 5
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • Bay S, Pazzani M (2001) Detecting group differences: mining contrast sets. Data Min Knowl Discov 5(3):213-246
    • (2001) Data Min Knowl Discov , vol.5 , Issue.3 , pp. 213-246
    • Bay, S.1    Pazzani, M.2
  • 6
    • 49749149150 scopus 로고    scopus 로고
    • The chosen few: On identifying valuable patterns
    • Omaha
    • Bringmann B, Zimmermann A (2007) The chosen few: on identifying valuable patterns. In: Proceedings of the ICDM'07, Omaha, pp 63-72
    • (2007) Proceedings of the ICDM'07 , pp. 63-72
    • Bringmann, B.1    Zimmermann, A.2
  • 8
    • 34249966007 scopus 로고
    • The cn2 induction algorithm
    • Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3:261-283
    • (1989) Mach Learn , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 11
    • 35048837125 scopus 로고    scopus 로고
    • Caep: Classification by aggregating emerging patterns
    • Tokyo
    • Dong G, Zhang X, Wong L, Li J (1999) CAEP: classification by aggregating emerging patterns. In: Proceedings of DS'99, Tokyo, pp 30-42
    • (1999) Proceedings of DS'99 , pp. 30-42
    • Dong, G.1    Zhang, X.2    Wong, L.3    Li, J.4
  • 12
    • 79951751404 scopus 로고    scopus 로고
    • Subgroup discovery meets bayesian networks: An exceptional model mining approach
    • Sydney
    • Duivesteijn W, Knobbe A, Feelders A, van Leeuwen M (2010) Subgroup discovery meets bayesian networks: An exceptional model mining approach. In: Proceedings of the ICDM'10, Sydney, pp 158-167
    • (2010) Proceedings of the ICDM'10 , pp. 158-167
    • Duivesteijn, W.1    Knobbe, A.2    Feelders, A.3    Van Leeuwen, M.4
  • 13
    • 0007425929 scopus 로고    scopus 로고
    • Bump hunting in high-dimensional data
    • Friedman J, Fisher N (1999) Bump hunting in high-dimensional data. Stat Comput 9(2):123-143
    • (1999) Stat Comput , vol.9 , Issue.2 , pp. 123-143
    • Friedman, J.1    Fisher, N.2
  • 15
    • 80052417110 scopus 로고    scopus 로고
    • Fast and memory-efficient discovery of the top-k relevant subgroups in a reduced candidate space
    • Athens
    • Grosskreutz H, Paurat D (2011) Fast and memory-efficient discovery of the top-k relevant subgroups in a reduced candidate space. In: Proceedings of the ECML/PKDD '11, Athens, pp 533-548
    • (2011) Proceedings of the ECML/PKDD '11 , pp. 533-548
    • Grosskreutz, H.1    Paurat, D.2
  • 16
    • 68749120539 scopus 로고    scopus 로고
    • On subgroup discovery in numerical domains
    • Grosskreutz H, Rüping S (2009) On subgroup discovery in numerical domains. Data Min Knowl Discov 19(2):210-226
    • (2009) Data Min Knowl Discov , vol.19 , Issue.2 , pp. 210-226
    • Grosskreutz, H.1    Rüping, S.2
  • 18
    • 78650134994 scopus 로고    scopus 로고
    • Subgroup discovery for election analysis: A case study in descriptive data mining
    • in LNAI. Springer, New York
    • Grosskreutz H, Boley M, Krause-Traudes M (2010) Subgroup discovery for election analysis: A case study in descriptive data mining. In: Proceedings of DS'10, no. 6332 in LNAI. Springer, New York, pp 57-71
    • (2010) Proceedings of DS'10 , Issue.6332 , pp. 57-71
    • Grosskreutz, H.1    Boley, M.2    Krause-Traudes, M.3
  • 20
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: Current status and future directions
    • Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future directions. Data Min Knowl Discov 15(1):55-86
    • (2007) Data Min Knowl Discov , vol.15 , Issue.1 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 21
    • 34447505074 scopus 로고    scopus 로고
    • Biogeography of european land mammals shows environmentally distinct and spatially coherent clusters
    • Heikinheimo H, ForteliusM, Eronen J,Mannila H (2007) Biogeography of european land mammals shows environmentally distinct and spatially coherent clusters. J Biogeogr 34(6):1053-1064
    • (2007) J Biogeogr , vol.34 , Issue.6 , pp. 1053-1064
    • Heikinheimo, H.1    Fortelius, M.2    Eronen, J.3    Mannila, H.4
  • 22
    • 0003641269 scopus 로고    scopus 로고
    • Chap Explora: A multipattern and multistrategy discovery assistant MIT Press, Cambridge
    • Klösgen W (1996) Advances in knowledge discovery and data mining, chap Explora: A multipattern and multistrategy discovery assistant. MIT Press, Cambridge, pp 249-271
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klösgen, W.1
  • 25
    • 33749555022 scopus 로고    scopus 로고
    • Maximally informative k-itemsets and their efficient discovery
    • Philadelphia, Berlin
    • Knobbe A, Ho E (2006a) Maximally informative k-itemsets and their efficient discovery. In: Proceedings of the KDD'06, Philadelphia, Berlin, pp 237-244
    • (2006) Proceedings of the KDD'06 , pp. 237-244
    • Knobbe, A.1    Ho, E.2
  • 28
    • 38449087206 scopus 로고    scopus 로고
    • Beam search induction and similarity constraints for predictive clustering trees
    • Berlin
    • Kocev D, Struyf J, Dzeroski S (2007) Beam search induction and similarity constraints for predictive clustering trees. In: LNCS KDID 2006, Berlin, pp 134-151
    • (2007) LNCS KDID 2006 , pp. 134-151
    • Kocev, D.1    Struyf, J.2    Dzeroski, S.3
  • 29
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining
    • Kralj Novak P, Lavrač N, Webb G (2009) Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. J Mach Learn Res 10:377-403
    • (2009) J Mach Learn Res , vol.10 , pp. 377-403
    • Kralj Novak, P.1    Lavrač, N.2    Webb, G.3
  • 30
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22(1):79-86
    • (1951) Ann Math Stat , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 33
    • 84857166641 scopus 로고    scopus 로고
    • Local models for expectation-driven subgroup discovery
    • Vancouver
    • Lemmerich F, Puppe F (2011) Local models for expectation-driven subgroup discovery. In: Proceedings of the ICDM'11, Vancouver
    • (2011) Proceedings of the ICDM'11
    • Lemmerich, F.1    Puppe, F.2
  • 35
    • 0035789625 scopus 로고    scopus 로고
    • Discovering the set of fundamental rule changes
    • San Francisco
    • Liu B, HsuW, Ma Y (2001) Discovering the set of fundamental rule changes. In: Proceedings of KDD'01, San Francisco, pp 335-340
    • (2001) Proceedings of KDD'01 , pp. 335-340
    • Liu, B.1    HsuW Ma, Y.2
  • 37
    • 0001128875 scopus 로고    scopus 로고
    • Multiple uses of frequent sets and condensed representations
    • Portland
    • Mannila H,ToivonenH(1996) Multiple uses of frequent sets and condensed representations. In: Proceedings of the KDD'96, Portland, pp 189-194
    • (1996) Proceedings of the KDD'96 , pp. 189-194
    • Mannila, H.1    Toivonen, H.2
  • 39
    • 0033687894 scopus 로고    scopus 로고
    • Traversing itemset lattice with statistical metric pruning
    • Dallas
    • Morishita S, Sese J (2000) Traversing itemset lattice with statistical metric pruning. In: Proceedings PODS, Dallas, pp 226-236
    • (2000) Proceedings PODS , pp. 226-236
    • Morishita, S.1    Sese, J.2
  • 40
    • 70350660915 scopus 로고    scopus 로고
    • Correlated itemset mining in roc space: A constraint programming approach
    • Paris
    • Nijssen S, Guns T, De Raedt L (2009) Correlated itemset mining in roc space: A constraint programming approach. In: Proceedings KDD'09, Paris, pp 647-656
    • (2009) Proceedings KDD'09 , pp. 647-656
    • Nijssen, S.1    Guns, T.2    De Raedt, L.3
  • 42
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, DingC (2005) Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226-1238
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long F DingC2
  • 43
  • 44
    • 0028566296 scopus 로고
    • Improving search through diversity
    • Seattle
    • Shell P, Rubio JH, Barro GQ (1994) Improving search through diversity. In: AAAI, Seattle, pp 1323-1328
    • (1994) AAAI , pp. 1323-1328
    • Shell, P.1    Rubio, J.H.2    Barro, G.Q.3
  • 46
    • 77958037753 scopus 로고    scopus 로고
    • Maximal exceptions with minimal descriptions
    • van Leeuwen M (2010) Maximal exceptions with minimal descriptions. Data Min Knowl Discov 21(2):259-276
    • (2010) Data Min Knowl Discov , vol.21 , Issue.2 , pp. 259-276
    • Van Leeuwen, M.1
  • 47
    • 80052410565 scopus 로고    scopus 로고
    • Non-redundant subgroup discovery in large and complex data
    • Bled
    • van Leeuwen M, Knobbe A (2011) Non-redundant subgroup discovery in large and complex data. In: Proceedings of the ECML PKDD'11, Bled, pp 459-474
    • (2011) Proceedings of the ECML PKDD'11 , pp. 459-474
    • Van Leeuwen, M.1    Knobbe, A.2
  • 49
    • 0000835392 scopus 로고
    • Opus: An efficient admissible algorithm for unordered search
    • Webb G (1995) Opus: An efficient admissible algorithm for unordered search. J Artif Intell Res 3:431-465
    • (1995) J Artif Intell Res , vol.3 , pp. 431-465
    • Webb, G.1
  • 50
    • 0035788917 scopus 로고    scopus 로고
    • Discovering associations with numeric variables
    • San Francisco
    • Webb G (2001) Discovering associations with numeric variables. In: Proceedings of KDD'01, San Francisco, pp 383-388
    • (2001) Proceedings of KDD'01 , pp. 383-388
    • Webb, G.1
  • 51
    • 33751367519 scopus 로고    scopus 로고
    • Ondetecting differences between groups
    • Washington
    • Webb G, Butler S,NewlandsD(2003)Ondetecting differences between groups. In: Proceedings of KDD'03, Washington, pp 256-265
    • (2003) Proceedings of KDD'03 , pp. 256-265
    • Webb, G.1    Butler, S.2    Newlands, D.3
  • 52
    • 34548792706 scopus 로고    scopus 로고
    • An algorithm for multi-relational discovery of subgroups
    • Springer, Heidelberg
    • Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Proceedings of PKDD 1997. Springer, Heidelberg, pp 78-87
    • (1997) Proceedings of PKDD 1997 , pp. 78-87
    • Wrobel, S.1
  • 53
    • 78149333073 scopus 로고    scopus 로고
    • Gspan: Graph-based substructure pattern mining
    • Maebashi
    • Yan X, Han J (2002) gSpan: Graph-based substructure pattern mining. In: Proceedings of the ICDM'02, Maebashi, pp 721-724
    • (2002) Proceedings of the ICDM'02 , pp. 721-724
    • Yan, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.