메뉴 건너뛰기




Volumn , Issue , 2011, Pages 360-369

Local models for expectation-driven subgroup discovery

Author keywords

Interestingness measures; Pattern mining; Subgroup discovery

Indexed keywords

COMPLEX PATTERN; DATA SETS; DESCRIPTIVE RULES; DROP-OUT; INTERESTINGNESS MEASURES; LOCAL MODEL; PATTERN MINING; REAL-WORLD APPLICATION; SOCIAL BOOKMARKING; SPAMMERS; SUBGROUP DISCOVERY; TARGET CONCEPT; UCI REPOSITORY; UNIVERSITY STUDENTS;

EID: 84857166641     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.94     Document Type: Conference Paper
Times cited : (8)

References (22)
  • 1
    • 77955631169 scopus 로고    scopus 로고
    • Self-sufficient itemsets: An approach to screening potentially interesting associations between items
    • January
    • G. I. Webb, "Self-sufficient itemsets: An approach to screening potentially interesting associations between items," ACM Transactions on Knowledge Discovery from Data, vol. 4, pp. 3:1-3:20, January 2010.
    • (2010) ACM Transactions on Knowledge Discovery from Data , vol.4 , pp. 31-320
    • Webb, G.I.1
  • 2
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • L. Geng and H. J. Hamilton, "Interestingness measures for data mining: A survey," ACM Computing Surveys, vol. 38, no. 3, 2006.
    • (2006) ACM Computing Surveys , vol.38 , Issue.3
    • Geng, L.1    Hamilton, H.J.2
  • 6
    • 78650134994 scopus 로고    scopus 로고
    • Subgroup discovery for election analysis: A case study in descriptive data mining
    • ser. Lecture Notes in Computer Science, B. Pfahringer, G. Holmes, and A. Hoffmann, Eds. Springer
    • H. Grosskreutz, M. Boley, and M. Krause-Traudes, "Subgroup Discovery for Election Analysis: A Case Study in Descriptive Data Mining." in Discovery Science, ser. Lecture Notes in Computer Science, B. Pfahringer, G. Holmes, and A. Hoffmann, Eds., vol. 6332. Springer, 2010, pp. 57-71.
    • (2010) Discovery Science , vol.6332 , pp. 57-71
    • Grosskreutz, H.1    Boley, M.2    Krause-Traudes, M.3
  • 7
    • 0041177691 scopus 로고
    • Practical issues in constructing a Bayes belief network
    • M. Henrion, "Practical issues in constructing a Bayes belief network." International Journal of Approximate Reasoning, vol. 2, no. 3, p. 337, 1988.
    • (1988) International Journal of Approximate Reasoning , vol.2 , Issue.3 , pp. 337
    • Henrion, M.1
  • 10
    • 0343773001 scopus 로고    scopus 로고
    • Learning Bayesian network parameters from small data sets: Application of Noisy-OR gates
    • A. Onisko, M. J. Druzdzel, and H. Wasyluk, "Learning Bayesian network parameters from small data sets: application of Noisy-OR gates." International Journal of Approximate Reasoning, vol. 27, no. 2, pp. 165-182, 2001.
    • (2001) International Journal of Approximate Reasoning , vol.27 , Issue.2 , pp. 165-182
    • Onisko, A.1    Druzdzel, M.J.2    Wasyluk, H.3
  • 11
    • 22544457421 scopus 로고    scopus 로고
    • Bayesian network modelling by qualitative patterns
    • P. Lucas, "Bayesian network modelling by qualitative patterns," in ECAI, 2002, pp. 690-694.
    • (2002) ECAI , pp. 690-694
    • Lucas, P.1
  • 13
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press
    • W. Klösgen, "Explora: A Multipattern and Multistrategy Discovery Assistant," in Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, 1996, pp. 249-271.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klösgen, W.1
  • 15
    • 58549089000 scopus 로고    scopus 로고
    • One in a million: Picking the right patterns
    • Mar. [Online]
    • B. Bringmann and A. Zimmermann, "One in a million: Picking the right patterns," Knowledge and Information Systems, vol. 18, no. 1, pp. 61-81, Mar. 2008. [Online]. Available: https://lirias.kuleuven.be/handle/123456789/ 221841
    • (2008) Knowledge and Information Systems , vol.18 , Issue.1 , pp. 61-81
    • Bringmann, B.1    Zimmermann, A.2
  • 16
    • 78049340978 scopus 로고    scopus 로고
    • A concise representation of association rules using minimal predictive rules
    • ser. Lecture Notes in Computer Science, J. Balcázar, F. Bonchi, A. Gionis, and M. Sebag, Eds. Springer
    • I. Batal and M. Hauskrecht, "A Concise Representation of Association Rules Using Minimal Predictive Rules." in ECML/PKDD (1), ser. Lecture Notes in Computer Science, J. Balcázar, F. Bonchi, A. Gionis, and M. Sebag, Eds., vol. 6321. Springer, 2010, pp. 87-102.
    • (2010) ECML/PKDD (1) , vol.6321 , pp. 87-102
    • Batal, I.1    Hauskrecht, M.2
  • 17
    • 84942772223 scopus 로고    scopus 로고
    • Exception rule mining with a relative interestingness measure
    • ser. Lecture Notes in Computer Science, T. Terano, H. Liu, and A. L. P. Chen, Eds. Springer
    • F. Hussain, H. Liu, E. Suzuki, and H. Lu, "Exception Rule Mining with a Relative Interestingness Measure." in PAKDD, ser. Lecture Notes in Computer Science, T. Terano, H. Liu, and A. L. P. Chen, Eds., vol. 1805. Springer, 2000, pp. 86-97.
    • (2000) PAKDD , vol.1805 , pp. 86-97
    • Hussain, F.1    Liu, H.2    Suzuki, E.3    Lu, H.4
  • 18
    • 54049104046 scopus 로고    scopus 로고
    • Maximum entropy based significance of itemsets
    • October
    • N. Tatti, "Maximum entropy based significance of itemsets," Knowledge Information Systems, vol. 17, pp. 57-77, October 2008.
    • (2008) Knowledge Information Systems , vol.17 , pp. 57-77
    • Tatti, N.1
  • 19
    • 57849137311 scopus 로고    scopus 로고
    • Scalable pattern mining with Bayesian networks as background knowledge
    • S. Jaroszewicz, T. Scheffer, and D. Simovici, "Scalable pattern mining with Bayesian networks as background knowledge," Data Mining and Knowledge Discovery, vol. 18, no. 1, pp. 56-100, 2009.
    • (2009) Data Mining and Knowledge Discovery , vol.18 , Issue.1 , pp. 56-100
    • Jaroszewicz, S.1    Scheffer, T.2    Simovici, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.