메뉴 건너뛰기




Volumn , Issue , 2009, Pages 647-655

Correlated itemset mining in ROC space: A constraint programming approach

Author keywords

Constraint programming; Itemset mining; ROC Analysis

Indexed keywords

ALTERNATIVE APPROACH; CONSTRAINT PROGRAMMING; CONVEX HULL; CORRELATION MEASURES; FREQUENCY THRESHOLD; INFORMATION GAIN; ITEM SETS; ITEMSET; ITEMSET MINING; MEMORY REQUIREMENTS; ORDERS OF MAGNITUDE; PATTERN MINING; PRUNING ALGORITHMS; ROC ANALYSIS; RUNTIMES;

EID: 70350660915     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557092     Document Type: Conference Paper
Times cited : (61)

References (30)
  • 1
    • 0002109327 scopus 로고    scopus 로고
    • Detecting change in categorical data: Mining contrast sets
    • S. D. Bay and M. J. Pazzani. Detecting change in categorical data: Mining contrast sets. In KDD, pages 302-306, 1999.
    • (1999) KDD , pp. 302-306
    • Bay, S.D.1    Pazzani, M.J.2
  • 2
    • 0002794540 scopus 로고    scopus 로고
    • Mining the most interesting rules
    • R. J. Bayardo Jr. and R. Agrawal. Mining the most interesting rules. In KDD, pages 145-154, 1999.
    • (1999) KDD , pp. 145-154
    • Bayardo Jr., R.J.1    Agrawal, R.2
  • 3
    • 0032680184 scopus 로고    scopus 로고
    • Constraint-based rule mining in large, dense databases
    • R. J. Bayardo Jr., R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large, dense databases. In ICDE, pages 188-197, 1999.
    • (1999) ICDE , pp. 188-197
    • Bayardo Jr., R.J.1    Agrawal, R.2    Gunopulos, D.3
  • 4
    • 33846237753 scopus 로고    scopus 로고
    • Extending the state-of-the-art of constraint-based pattern discovery
    • F. Bonchi and C. Lucchese. Extending the state-of-the-art of constraint-based pattern discovery. Data Knowl. Eng., 60(2):377-399, 2007.
    • (2007) Data Knowl. Eng , vol.60 , Issue.2 , pp. 377-399
    • Bonchi, F.1    Lucchese, C.2
  • 5
    • 33646417618 scopus 로고    scopus 로고
    • 2 - decision trees for tree structured data
    • 2 - decision trees for tree structured data. In PKDD, pages 46-58, 2005.
    • (2005) PKDD , pp. 46-58
    • Bringmann, B.1    Zimmermann, A.2
  • 7
    • 0037865635 scopus 로고    scopus 로고
    • DualMiner: A dual-pruning algorithm for itemsets with constraints
    • C. Bucila, J. Gehrke, D. Kifer, and W. M. White. DualMiner: A dual-pruning algorithm for itemsets with constraints. Data Min. Knowl. Discov., 7(3):241-272, 2003.
    • (2003) Data Min. Knowl. Discov , vol.7 , Issue.3 , pp. 241-272
    • Bucila, C.1    Gehrke, J.2    Kifer, D.3    White, W.M.4
  • 8
    • 34548741255 scopus 로고    scopus 로고
    • Discriminative frequent pattern analysis for effective classification
    • H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In ICDE, pages 716-725, 2007.
    • (2007) ICDE , pp. 716-725
    • Cheng, H.1    Yan, X.2    Han, J.3    Hsu, C.-W.4
  • 9
    • 52649163329 scopus 로고    scopus 로고
    • Direct discriminative pattern mining for effective classification
    • H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern mining for effective classification. In ICDE, pages 169-178, 2008.
    • (2008) ICDE , pp. 169-178
    • Cheng, H.1    Yan, X.2    Han, J.3    Yu, P.S.4
  • 10
    • 65449187983 scopus 로고    scopus 로고
    • Constraint programming for itemset mining
    • L. De Raedt, T. Guns, and S. Nijssen. Constraint programming for itemset mining. In KDD, pages 204-212, 2008.
    • (2008) KDD , pp. 204-212
    • De Raedt, L.1    Guns, T.2    Nijssen, S.3
  • 11
    • 24344484786 scopus 로고    scopus 로고
    • Frequent substructure-based approaches for classifying chemical compounds
    • M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data Eng., 17(8):1036-1050, 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.8 , pp. 1036-1050
    • Deshpande, M.1    Kuramochi, M.2    Wale, N.3    Karypis, G.4
  • 12
    • 0002034653 scopus 로고    scopus 로고
    • Efficient mining of emerging patterns: Discovering trends and differences
    • G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In KDD, pages 43-52, 1999.
    • (1999) KDD , pp. 43-52
    • Dong, G.1    Li, J.2
  • 13
    • 65449172082 scopus 로고    scopus 로고
    • Direct mining of discriminative and essential frequent patterns via model-based search tree
    • W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu, and O. Verscheure. Direct mining of discriminative and essential frequent patterns via model-based search tree. In KDD, pages 230-238, 2008.
    • (2008) KDD , pp. 230-238
    • Fan, W.1    Zhang, K.2    Cheng, H.3    Gao, J.4    Yan, X.5    Han, J.6    Yu, P.S.7    Verscheure, O.8
  • 14
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 15
    • 14844361816 scopus 로고    scopus 로고
    • ROC 'n' rule learning - towards a better understanding of covering algorithms
    • J. Fürnkranz and P. A. Flach. ROC 'n' rule learning - towards a better understanding of covering algorithms. Machine Learning, 58(1):39-77, 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.A.2
  • 16
    • 56049106887 scopus 로고    scopus 로고
    • Tight optimistic estimates for fast subgroup discovery
    • H. Grosskreutz, S. Rüping, and S. Wrobel. Tight optimistic estimates for fast subgroup discovery. In ECML/PKDD (1), pages 440-456, 2008.
    • (2008) ECML/PKDD (1) , pp. 440-456
    • Grosskreutz, H.1    Rüping, S.2    Wrobel, S.3
  • 18
    • 34548735819 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • B. Kavsek, N. Lavrac, and V. Jovanoski. APRIORI-SD: Adapting association rule learning to subgroup discovery. In IDA, pages 230-241, 2003.
    • (2003) IDA , pp. 230-241
    • Kavsek, B.1    Lavrac, N.2    Jovanoski, V.3
  • 19
    • 0035789622 scopus 로고    scopus 로고
    • Molecular feature mining in HIV data
    • S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data. In KDD, pages 136-143, 2001.
    • (2001) KDD , pp. 136-143
    • Kramer, S.1    De Raedt, L.2    Helma, C.3
  • 20
    • 0012888467 scopus 로고    scopus 로고
    • Algorithms for mining association rules for binary segmentations of huge categorical databases
    • Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and K. Yoda. Algorithms for mining association rules for binary segmentations of huge categorical databases. In VLDB, pages 380-391, 1998.
    • (1998) VLDB , pp. 380-391
    • Morimoto, Y.1    Fukuda, T.2    Matsuzawa, H.3    Tokuyama, T.4    Yoda, K.5
  • 21
    • 0033687894 scopus 로고    scopus 로고
    • Traversing itemset lattice with statistical metric pruning
    • S. Morishita and J. Sese. Traversing itemset lattice with statistical metric pruning. In PODS, pages 226-236, 2000.
    • (2000) PODS , pp. 226-236
    • Morishita, S.1    Sese, J.2
  • 22
    • 33745796166 scopus 로고    scopus 로고
    • Multi-class correlated pattern mining
    • S. Nijssen and J. N. Kok. Multi-class correlated pattern mining. In KDID, pages 165-187, 2005.
    • (2005) KDID , pp. 165-187
    • Nijssen, S.1    Kok, J.N.2
  • 23
    • 84880749757 scopus 로고    scopus 로고
    • ROCCER: An algorithm for rule learning based on ROC analysis
    • R. C. Prati and P. A. Flach. ROCCER: An algorithm for rule learning based on ROC analysis. In IJCAI, pages 823-828, 2005.
    • (2005) IJCAI , pp. 823-828
    • Prati, R.C.1    Flach, P.A.2
  • 24
    • 84864843490 scopus 로고    scopus 로고
    • Answering the most correlated n association rules efficiently
    • J. Sese and S. Morishita. Answering the most correlated n association rules efficiently. In PKDD, pages 410-422, 2002.
    • (2002) PKDD , pp. 410-422
    • Sese, J.1    Morishita, S.2
  • 25
    • 55049091309 scopus 로고    scopus 로고
    • Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
    • T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.
    • (2004) FIMI
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 26
    • 34548792706 scopus 로고    scopus 로고
    • An algorithm for multi-relational discovery of subgroups
    • S. Wrobel. An algorithm for multi-relational discovery of subgroups. In PKDD, pages 78-87, 1997.
    • (1997) PKDD , pp. 78-87
    • Wrobel, S.1
  • 27
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In SIGMOD Conference, pages 433-444, 2008.
    • (2008) SIGMOD Conference , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 28
    • 85138646379 scopus 로고    scopus 로고
    • New algorithms for fast discovery of association rules
    • M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In KDD, pages 283-286, 1997.
    • (1997) KDD , pp. 283-286
    • Zaki, M.J.1    Parthasarathy, S.2    Ogihara, M.3    Li, W.4
  • 29
    • 70350627043 scopus 로고    scopus 로고
    • Reducing the main memory consumptions of FPmax* and FPclose
    • J. Zhu and G. Grahne. Reducing the main memory consumptions of FPmax* and FPclose. In FIMI, 2004.
    • (2004) FIMI
    • Zhu, J.1    Grahne, G.2
  • 30
    • 34548591680 scopus 로고    scopus 로고
    • CTC - correlating tree patterns for classification
    • A. Zimmermann and B. Bringmann. CTC - correlating tree patterns for classification. In ICDM, pages 833-836, 2005.
    • (2005) ICDM , pp. 833-836
    • Zimmermann, A.1    Bringmann, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.