메뉴 건너뛰기




Volumn , Issue , 2010, Pages 158-167

Subgroup discovery meets Bayesian networks - An Exceptional Model Mining approach

Author keywords

Bayesian networks; Exceptional Model Mining; Subgroup discovery

Indexed keywords

DATA SETS; DISTANCE METRICS; EDIT DISTANCE; EXCEPTIONAL MODEL MINING; MUSIC THEORY; SEMANTIC SCENE CLASSIFICATION; SUBGROUP DISCOVERY;

EID: 79951751404     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.53     Document Type: Conference Paper
Times cited : (47)

References (32)
  • 1
    • 56049103126 scopus 로고    scopus 로고
    • Exceptional model mining
    • LNCS Springer, Heidelberg
    • D. Leman, A. Feelders, A. J. Knobbe, Exceptional Model Mining, Proc. ECML/PKDD (2) 2008, LNCS, volume 5212, pp. 1-16, Springer, Heidelberg.
    • (2008) Proc. ECML/PKDD , vol.5212 , Issue.2 , pp. 1-16
    • Leman, D.1    Feelders, A.2    Knobbe, A.J.3
  • 3
  • 4
    • 0002596015 scopus 로고
    • Food web complexity and species diversity
    • R. T. Paine, Food Web Complexity and Species Diversity, The American Naturalist 100 (910), pp. 65-75, 1966.
    • (1966) The American Naturalist , vol.100 , Issue.910 , pp. 65-75
    • Paine, R.T.1
  • 5
    • 4344568017 scopus 로고    scopus 로고
    • Bayesian reconstruction of traffic accidents
    • G. A. Davis, Bayesian reconstruction of traffic accidents, Law, Probability and Risk 2, pp. 69-89, 2003.
    • (2003) Law, Probability and Risk , vol.2 , pp. 69-89
    • Davis, G.A.1
  • 6
    • 0343488681 scopus 로고    scopus 로고
    • DIAVAL, a Bayesian expert system for echocardiography
    • DOI 10.1016/S0933-3657(97)00384-9, PII S0933365797003849
    • F. J. Díez, J. Mira, E. Iturralde, S. Zubillaga, DIAVAL, a Bayesian expert system for echocardiography, Artificial Intelligence in Medicine 10, pp. 59-73, 1997. (Pubitemid 27239418)
    • (1997) Artificial Intelligence in Medicine , vol.10 , Issue.1 , pp. 59-73
    • Diez, F.J.1    Mira, J.2    Iturralde, E.3    Zubillaga, S.4
  • 7
    • 27644580886 scopus 로고    scopus 로고
    • Using Bayesian networks to model expected and unexpected operational losses
    • M. Neil, N. Fenton, M. Tailor, Using Bayesian Networks to Model Expected and Unexpected Operational Losses, Risk Analysis 25 (4), 2005.
    • (2005) Risk Analysis , vol.25 , Issue.4
    • Neil, M.1    Fenton, N.2    Tailor, M.3
  • 8
    • 34547997350 scopus 로고    scopus 로고
    • On learning linear ranking functions for beam search
    • Proc. ICML 2007 ACM, New York
    • Y. H. Xu, A. Fern, On Learning Linear Ranking Functions for Beam Search, Proc. ICML 2007, ACM International Conference Proceeding Series vol. 227, pp. 1047-1054, ACM, New York.
    • ACM International Conference Proceeding Series , vol.227 , pp. 1047-1054
    • Xu, Y.H.1    Fern, A.2
  • 11
    • 0001926525 scopus 로고    scopus 로고
    • Theory refinement on Bayesian networks
    • Morgan Kaufmann, San Francisco
    • W. L. Buntine, Theory Refinement on Bayesian Networks, Proc. UAI 1991, pp. 52-60, Morgan Kaufmann, San Francisco.
    • Proc. UAI 1991 , pp. 52-60
    • Buntine, W.L.1
  • 13
    • 0030245966 scopus 로고    scopus 로고
    • Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters
    • P. Larrañaga, M. Poza, Y. Yurramendi, R. H. Murga, C. M. H. Kuijpers, Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters, IEEE Trans. Pattern Anal. Mach. Intell. 18 (9), pp. 912-926, 1996. (Pubitemid 126772833)
    • (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.18 , Issue.9 , pp. 912-926
    • Larranaga, P.1
  • 14
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, D. M. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data, Machine Learning 20, pp. 197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 15
    • 0002013121 scopus 로고    scopus 로고
    • A transformational characterization of equivalent Bayesian network structures
    • Morgan Kaufmann, San Francisco
    • D. M. Chickering, A Transformational Characterization of Equivalent Bayesian Network Structures, Proc. UAI 1995, pp. 87-98, Morgan Kaufmann, San Francisco.
    • Proc. UAI 1995 , pp. 87-98
    • Chickering, D.M.1
  • 17
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • S. A. Andersson, D. Madigan, M. D. Perlman, A Characterization of Markov Equivalence Classes for Acyclic Digraphs, Annals of Statistics, 25 (2), pp. 505-541, 1997.
    • (1997) Annals of Statistics , vol.25 , Issue.2 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 18
    • 0042496103 scopus 로고    scopus 로고
    • Learning Equivalence Classes of Bayesian-Network Structures
    • DOI 10.1162/153244302760200696
    • D. M. Chickering, Learning Equivalence Classes of Bayesian-Network Structures, Journal of Machine Learning Research 2, pp. 445-498, 2002. (Pubitemid 135712569)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 445-498
    • Chickering, D.M.1
  • 19
    • 0002095306 scopus 로고    scopus 로고
    • Equivalence and synthesis of causal models
    • Elsevier, Amsterdam
    • T. Verma, J. Pearl, Equivalence and Synthesis of Causal Models, Proc. UAI 1990, pp. 255-270, Elsevier, Amsterdam.
    • Proc. UAI 1990 , pp. 255-270
    • Verma, T.1    Pearl, J.2
  • 21
    • 80055037991 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • LNCS Springer, Heidelberg
    • W. Cheng, E. Hüllermeier, Combining Instance-Based Learning and Logistic Regression for Multilabel Classification, Proc. ECML/PKDD (1) 2009, LNCS, volume 5781, pp. 6, Springer, Heidelberg.
    • (2009) Proc. ECML/PKDD , vol.5781 , Issue.1 , pp. 6
    • Cheng, W.1    Hüllermeier, E.2
  • 23
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. R. Boutell, J. Luo, X. Shen, C. M. Brown, Learning Multi-Label Scene Classification, Pattern Recognition 37 (9), pp. 1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 24
  • 27
    • 34447505074 scopus 로고    scopus 로고
    • Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters
    • DOI 10.1111/j.1365-2699.2006.01664.x
    • H. Heikinheimo, M. Fortelius, J. Eronen, H. Manilla, Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters, Journal of Biogeography 34 (6), pp. 1053-1064, 2007. (Pubitemid 47074535)
    • (2007) Journal of Biogeography , vol.34 , Issue.6 , pp. 1053-1064
    • Heikinheimo, H.1    Fortelius, M.2    Eronen, J.3    Mannila, H.4
  • 30
    • 85023205150 scopus 로고
    • Matrix multiplication via arithmetic progressions
    • D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation 9 (3), pp. 251-280, 1990.
    • (1990) Journal of Symbolic Computation , vol.9 , Issue.3 , pp. 251-280
    • Coppersmith, D.1    Winograd, S.2
  • 31
    • 34250487811 scopus 로고
    • Gaussian elimination is not optimal
    • V. Strassen, Gaussian Elimination is not Optimal, Numerische Mathematik 13, pp. 354-356, 1969.
    • (1969) Numerische Mathematik , vol.13 , pp. 354-356
    • Strassen, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.