-
1
-
-
0001371923
-
Fast discovery of association rules
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining, pages 307-328, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
3
-
-
11344271623
-
Essential classification rule sets
-
E. Baralis and S. Chiusano. Essential classification rule sets. ACM Trans. Database Syst., 29(4): 635-674, 2004.
-
(2004)
ACM Trans. Database Syst
, vol.29
, Issue.4
, pp. 635-674
-
-
Baralis, E.1
Chiusano, S.2
-
4
-
-
84867817851
-
Mining minimal non-redundant association rules using frequent closed itemsets
-
Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal non-redundant association rules using frequent closed itemsets. Lecture Notes in Computer Science, 1861:972-986, 2000a.
-
(2000)
Lecture Notes in Computer Science
, vol.1861
, pp. 972-986
-
-
Bastide, Y.1
Pasquier, N.2
Taouil, R.3
Stumme, G.4
Lakhal, L.5
-
5
-
-
0006155366
-
Mining frequent patterns with counting inference
-
66-75
-
Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent patterns with counting inference. SIGKDD Explor. Newsl., 2(2):66-75, 2000b.
-
(2000)
SIGKDD Explor. Newsl
, vol.2
, Issue.2
-
-
Bastide, Y.1
Taouil, R.2
Pasquier, N.3
Stumme, G.4
Lakhal, L.5
-
6
-
-
23044527560
-
Detecting group differences: Mining contrast sets
-
213-246, ISSN 1384-5810
-
S.D. Bay and M.J. Pazzani. Detecting group differences: Mining contrast sets. Data Min. Knowl. Discov., 5(3):213-246, 2001. ISSN 1384-5810.
-
(2001)
Data Min. Knowl. Discov
, vol.5
, Issue.3
-
-
Bay, S.D.1
Pazzani, M.J.2
-
7
-
-
0037243046
-
Free-sets: A condensed representation of boolean data for the approximation of frequency queries
-
5-22, ISSN 1384-5810
-
J.F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A condensed representation of boolean data for the approximation of frequency queries. Data Min. Knowl. Discov., 7(1):5-22, 2003. ISSN 1384-5810.
-
(2003)
Data Min. Knowl. Discov
, vol.7
, Issue.1
-
-
Boulicaut, J.F.1
Bykowski, A.2
Rigotti, C.3
-
8
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In Proceedings ACM SIGMOD Int. Conference on Management of Data, pages 255-264, 1997.
-
(1997)
Proceedings ACM SIGMOD Int. Conference on Management of Data
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
11
-
-
1842564359
-
-
Blackwell Publishing, Oxford, United Kingdom
-
H.C. Causton, J. Quackenbush, and A. Brazma. Microarray Gene Expression Data Analysis: A Beginner's Guide. Blackwell Publishing, Oxford, United Kingdom, 2003.
-
(2003)
Microarray Gene Expression Data Analysis: A Beginner's Guide
-
-
Causton, H.C.1
Quackenbush, J.2
Brazma, A.3
-
12
-
-
34249966007
-
The CN2 induction algorithm
-
P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261-283, 1989.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
16
-
-
35048837125
-
CAEP: Classification by aggregating emerging patterns
-
G. Dong, X. Zhang, L. Wong, and J. Li. CAEP: classification by aggregating emerging patterns. In Proceedings of the 2nd In. Conference on Discovery Science, pages 30-42, 1999.
-
(1999)
Proceedings of the 2nd In. Conference on Discovery Science
, pp. 30-42
-
-
Dong, G.1
Zhang, X.2
Wong, L.3
Li, J.4
-
18
-
-
4744364732
-
Induction of comprehensible models for gene expression datasets by subgroup discovery methodology
-
D. Gamberger, N. Lavrač, F. Železný, and J. Tolar. Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. Journal of Biomedical Informatics, 37 (4):269-284, 2004.
-
(2004)
Journal of Biomedical Informatics
, vol.37
, Issue.4
, pp. 269-284
-
-
Gamberger, D.1
Lavrač, N.2
Železný, F.3
Tolar, J.4
-
21
-
-
27544478009
-
Advances in frequent itemset mining implementations: Report on FIMI'03
-
B. Goethals and M. Zaki. Advances in frequent itemset mining implementations: report on FIMI'03. SIGKDD Explor. Newsl., 6(1): 109-117, 2004.
-
(2004)
SIGKDD Explor. Newsl
, vol.6
, Issue.1
, pp. 109-117
-
-
Goethals, B.1
Zaki, M.2
-
22
-
-
0003372359
-
Mining frequent patterns by pattern-growth: Methodology and implications
-
J. Han and J. Pei. Mining frequent patterns by pattern-growth: methodology and implications. SIGKDD Explor. Newsl., 2(2): 14-20, 2000.
-
(2000)
SIGKDD Explor. Newsl
, vol.2
, Issue.2
, pp. 14-20
-
-
Han, J.1
Pei, J.2
-
23
-
-
84857462987
-
Classification rule learning with APRIORI-C
-
Springer-Verlag
-
V. Jovanoski and N. Lavrač. Classification rule learning with APRIORI-C. In Proceedings of the10th Portuguese Conference on Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint Solving (EPIA '01), pages 44-51. Springer-Verlag, 2001.
-
(2001)
Proceedings of the10th Portuguese Conference on Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint Solving (EPIA '01)
, pp. 44-51
-
-
Jovanoski, V.1
Lavrač, N.2
-
24
-
-
33747881454
-
APRIORI-SD: Adapting association rule learning to subgroup discovery
-
To appear
-
B. Kavšek and N. Lavrač. APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, To appear, 2006.
-
(2006)
Applied Artificial Intelligence
-
-
Kavšek, B.1
Lavrač, N.2
-
26
-
-
44649094563
-
Application of closed itemset mining for class labeled data in functional genomics
-
P. Kralj, A. Grubešič, K. Gruden N. Toplak, N. Lavrač, and G.C. Garriga. Application of closed itemset mining for class labeled data in functional genomics. Informatica Medica Slovenica, 2006.
-
(2006)
Informatica Medica Slovenica
-
-
Kralj, P.1
Grubešič, A.2
Gruden, K.3
Toplak, N.4
Lavrač, N.5
Garriga, G.C.6
-
28
-
-
0032648857
-
A study of relevance for learning in deductive databases
-
N. Lavrač, D. Gamberger, and V. Jovanoski. A study of relevance for learning in deductive databases. Journal of Logic Programming, 40(2/3):215-249, 1999.
-
(1999)
Journal of Logic Programming
, vol.40
, Issue.2-3
, pp. 215-249
-
-
Lavrač, N.1
Gamberger, D.2
Jovanoski, V.3
-
29
-
-
84925740795
-
Subgroup discovery with CN2-SD
-
N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-SD. Journal of Machine Learning Research, 5:153-188, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 153-188
-
-
Lavrač, N.1
Kavšek, B.2
Flach, P.3
Todorovski, L.4
-
33
-
-
1842783448
-
Using machine learning to design and interpret gene-expression microarrays
-
M. Molla, M. Waddell, D. Page, and J. Shavlik. Using machine learning to design and interpret gene-expression microarrays. AI Magazine, 25(1):23-44, 2004.
-
(2004)
AI Magazine
, vol.25
, Issue.1
, pp. 23-44
-
-
Molla, M.1
Waddell, M.2
Page, D.3
Shavlik, J.4
-
34
-
-
0141871186
-
-
G. Parmigiani, E.S. Garrett, R.A. Irizarry, and S.L. Zeger, editors, Springer-Verlag, New York
-
G. Parmigiani, E.S. Garrett, R.A. Irizarry, and S.L. Zeger, editors. The Analysis of Gene Expression Data: Methods and Software. Springer-Verlag, New York, 2003.
-
(2003)
The Analysis of Gene Expression Data: Methods and Software
-
-
-
35
-
-
44649201536
-
-
N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal. Closed set based discovery of small covers for association rules. Networking and Information Systems, 3(2):349-377, 2001.
-
N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal. Closed set based discovery of small covers for association rules. Networking and Information Systems, 3(2):349-377, 2001.
-
-
-
-
36
-
-
0001122097
-
Closure lattices
-
J.L. Pfaltz. Closure lattices. Discrete Mathematics, 154:217-236, 1996.
-
(1996)
Discrete Mathematics
, vol.154
, pp. 217-236
-
-
Pfaltz, J.L.1
-
38
-
-
0035283313
-
Robust classification for imprecise environments
-
F.J. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42(3):203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.J.1
Fawcett, T.2
-
41
-
-
44649163242
-
-
L. Taiz and E. Zeiger. Plant Physiology. Sinauer Associates, second edition (372:374) edition, 1998.
-
L. Taiz and E. Zeiger. Plant Physiology. Sinauer Associates, second edition (372:374) edition, 1998.
-
-
-
-
42
-
-
25144439604
-
-
Addison-Wesley Longman Publishing Co, Inc, Boston, MA, USA
-
P-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.
-
(2005)
Introduction to Data Mining
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
43
-
-
0033905505
-
Mining bases for association rules using closed sets
-
IEEE Computer Society
-
R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Mining bases for association rules using closed sets. In Proceedings of the 16th Int. Conference on Data Engineering, page 307. IEEE Computer Society, 2000.
-
(2000)
Proceedings of the 16th Int. Conference on Data Engineering
, pp. 307
-
-
Taouil, R.1
Bastide, Y.2
Pasquier, N.3
Lakhal, L.4
-
44
-
-
35048829395
-
An efficient algorithm for enumerating closed patterns in transaction databases
-
T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for enumerating closed patterns in transaction databases. In Discovery Science, pages 16-31, 2004.
-
(2004)
Discovery Science
, pp. 16-31
-
-
Uno, T.1
Asai, T.2
Uchida, Y.3
Arimura, H.4
-
50
-
-
19544387403
-
Learning rules from highly unbalanced data sets
-
J. Zhang, E. Bloedorn, L. Rosen, and D. Venese. Learning rules from highly unbalanced data sets. In Proceedings of the 4th. IEEE Int. Conference on Data Mining (ICDM'04), pages 571-574, 2004.
-
(2004)
Proceedings of the 4th. IEEE Int. Conference on Data Mining (ICDM'04)
, pp. 571-574
-
-
Zhang, J.1
Bloedorn, E.2
Rosen, L.3
Venese, D.4
|