메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 559-580

Closed sets for labeled data

Author keywords

Closed sets; Emerging patterns; Essential rules; ROC space; Rule relevancy; Subgroup discovery

Indexed keywords

ASSOCIATIVE PROCESSING; CLASSIFICATION (OF INFORMATION); POWDERS;

EID: 44649087099     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (65)

References (50)
  • 3
    • 11344271623 scopus 로고    scopus 로고
    • Essential classification rule sets
    • E. Baralis and S. Chiusano. Essential classification rule sets. ACM Trans. Database Syst., 29(4): 635-674, 2004.
    • (2004) ACM Trans. Database Syst , vol.29 , Issue.4 , pp. 635-674
    • Baralis, E.1    Chiusano, S.2
  • 6
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • 213-246, ISSN 1384-5810
    • S.D. Bay and M.J. Pazzani. Detecting group differences: Mining contrast sets. Data Min. Knowl. Discov., 5(3):213-246, 2001. ISSN 1384-5810.
    • (2001) Data Min. Knowl. Discov , vol.5 , Issue.3
    • Bay, S.D.1    Pazzani, M.J.2
  • 7
    • 0037243046 scopus 로고    scopus 로고
    • Free-sets: A condensed representation of boolean data for the approximation of frequency queries
    • 5-22, ISSN 1384-5810
    • J.F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A condensed representation of boolean data for the approximation of frequency queries. Data Min. Knowl. Discov., 7(1):5-22, 2003. ISSN 1384-5810.
    • (2003) Data Min. Knowl. Discov , vol.7 , Issue.1
    • Boulicaut, J.F.1    Bykowski, A.2    Rigotti, C.3
  • 12
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261-283, 1989.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 18
    • 4744364732 scopus 로고    scopus 로고
    • Induction of comprehensible models for gene expression datasets by subgroup discovery methodology
    • D. Gamberger, N. Lavrač, F. Železný, and J. Tolar. Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. Journal of Biomedical Informatics, 37 (4):269-284, 2004.
    • (2004) Journal of Biomedical Informatics , vol.37 , Issue.4 , pp. 269-284
    • Gamberger, D.1    Lavrač, N.2    Železný, F.3    Tolar, J.4
  • 21
    • 27544478009 scopus 로고    scopus 로고
    • Advances in frequent itemset mining implementations: Report on FIMI'03
    • B. Goethals and M. Zaki. Advances in frequent itemset mining implementations: report on FIMI'03. SIGKDD Explor. Newsl., 6(1): 109-117, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1 , pp. 109-117
    • Goethals, B.1    Zaki, M.2
  • 22
    • 0003372359 scopus 로고    scopus 로고
    • Mining frequent patterns by pattern-growth: Methodology and implications
    • J. Han and J. Pei. Mining frequent patterns by pattern-growth: methodology and implications. SIGKDD Explor. Newsl., 2(2): 14-20, 2000.
    • (2000) SIGKDD Explor. Newsl , vol.2 , Issue.2 , pp. 14-20
    • Han, J.1    Pei, J.2
  • 24
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • To appear
    • B. Kavšek and N. Lavrač. APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, To appear, 2006.
    • (2006) Applied Artificial Intelligence
    • Kavšek, B.1    Lavrač, N.2
  • 28
    • 0032648857 scopus 로고    scopus 로고
    • A study of relevance for learning in deductive databases
    • N. Lavrač, D. Gamberger, and V. Jovanoski. A study of relevance for learning in deductive databases. Journal of Logic Programming, 40(2/3):215-249, 1999.
    • (1999) Journal of Logic Programming , vol.40 , Issue.2-3 , pp. 215-249
    • Lavrač, N.1    Gamberger, D.2    Jovanoski, V.3
  • 33
    • 1842783448 scopus 로고    scopus 로고
    • Using machine learning to design and interpret gene-expression microarrays
    • M. Molla, M. Waddell, D. Page, and J. Shavlik. Using machine learning to design and interpret gene-expression microarrays. AI Magazine, 25(1):23-44, 2004.
    • (2004) AI Magazine , vol.25 , Issue.1 , pp. 23-44
    • Molla, M.1    Waddell, M.2    Page, D.3    Shavlik, J.4
  • 34
    • 0141871186 scopus 로고    scopus 로고
    • G. Parmigiani, E.S. Garrett, R.A. Irizarry, and S.L. Zeger, editors, Springer-Verlag, New York
    • G. Parmigiani, E.S. Garrett, R.A. Irizarry, and S.L. Zeger, editors. The Analysis of Gene Expression Data: Methods and Software. Springer-Verlag, New York, 2003.
    • (2003) The Analysis of Gene Expression Data: Methods and Software
  • 35
    • 44649201536 scopus 로고    scopus 로고
    • N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal. Closed set based discovery of small covers for association rules. Networking and Information Systems, 3(2):349-377, 2001.
    • N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal. Closed set based discovery of small covers for association rules. Networking and Information Systems, 3(2):349-377, 2001.
  • 36
  • 38
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F.J. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42(3):203-231, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.J.1    Fawcett, T.2
  • 41
    • 44649163242 scopus 로고    scopus 로고
    • L. Taiz and E. Zeiger. Plant Physiology. Sinauer Associates, second edition (372:374) edition, 1998.
    • L. Taiz and E. Zeiger. Plant Physiology. Sinauer Associates, second edition (372:374) edition, 1998.
  • 44
    • 35048829395 scopus 로고    scopus 로고
    • An efficient algorithm for enumerating closed patterns in transaction databases
    • T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for enumerating closed patterns in transaction databases. In Discovery Science, pages 16-31, 2004.
    • (2004) Discovery Science , pp. 16-31
    • Uno, T.1    Asai, T.2    Uchida, Y.3    Arimura, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.