-
1
-
-
77956414365
-
GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
-
Adriano L.I.O., Petronio L.B., Ricardo M.F.L., Márcio L.C. GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation. Information and Software Technology 2010, 52(11):1155-1166.
-
(2010)
Information and Software Technology
, vol.52
, Issue.11
, pp. 1155-1166
-
-
Adriano, L.I.O.1
Petronio, L.B.2
Ricardo, M.F.L.3
Márcio, L.C.4
-
2
-
-
10244238854
-
Fault identification for process monitoring using kernel principal component analysis
-
Choi J.H., Lee J.M., Choi S.W., Lee D., Lee I.B. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science 2005, 60(1):279-288.
-
(2005)
Chemical Engineering Science
, vol.60
, Issue.1
, pp. 279-288
-
-
Choi, J.H.1
Lee, J.M.2
Choi, S.W.3
Lee, D.4
Lee, I.B.5
-
3
-
-
11144331636
-
Fault detection and identification of nonlinear processes based on KPCA
-
Choi S.W., Lee C., Lee J.M., Park J.H., Lee I.B. Fault detection and identification of nonlinear processes based on KPCA. Chemometrics and Intelligent Laboratory Systems 2005, 75(1):55-67.
-
(2005)
Chemometrics and Intelligent Laboratory Systems
, vol.75
, Issue.1
, pp. 55-67
-
-
Choi, S.W.1
Lee, C.2
Lee, J.M.3
Park, J.H.4
Lee, I.B.5
-
4
-
-
10044259622
-
Nonlinear dynamic process monitoring based on dynamic kernel PCA
-
Choi S.W., Lee I.B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science 2004, 59:5897-5908.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 5897-5908
-
-
Choi, S.W.1
Lee, I.B.2
-
5
-
-
40949103011
-
Nonlinear multiscale modeling for fault detection and identification
-
Choi S.W., Morris J., Lee I.B. Nonlinear multiscale modeling for fault detection and identification. Chemical Engineering Science 2008, 63:2252-2266.
-
(2008)
Chemical Engineering Science
, vol.63
, pp. 2252-2266
-
-
Choi, S.W.1
Morris, J.2
Lee, I.B.3
-
7
-
-
0043015539
-
Nonlinear principal analysis based on principal cure and neural networks
-
Dong D., MaAvoy T.J. Nonlinear principal analysis based on principal cure and neural networks. Computers and Chemical Engineering 1996, 20(1):65-78.
-
(1996)
Computers and Chemical Engineering
, vol.20
, Issue.1
, pp. 65-78
-
-
Dong, D.1
MaAvoy, T.J.2
-
8
-
-
56349116904
-
Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM
-
Engin A. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM. Expert Systems with Applications 2009, 36:1391-1402.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 1391-1402
-
-
Engin, A.1
-
9
-
-
63249084878
-
Improved kernel PCA-based monitoring approach for nonlinear processes
-
Ge Z., Yang C., Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science 2009, 64:2245-2255.
-
(2009)
Chemical Engineering Science
, vol.64
, pp. 2245-2255
-
-
Ge, Z.1
Yang, C.2
Song, Z.3
-
10
-
-
0004063090
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
Haykin S. Neural Networks 1999, Prentice-Hall, Englewood Cliffs, NJ.
-
(1999)
Neural Networks
-
-
Haykin, S.1
-
11
-
-
0036158552
-
A simple decomposition method for support vector machine
-
Hsu C.W., Lin C.J. A simple decomposition method for support vector machine. Machine Learning 2002, 46(1-3):219-314.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 219-314
-
-
Hsu, C.W.1
Lin, C.J.2
-
12
-
-
33748076461
-
A GA-based feature selection and parameters optimization for support vector machines Original Research Article
-
Huang C.L., Wang C.J. A GA-based feature selection and parameters optimization for support vector machines Original Research Article. Expert Systems with Applications 2006, 31(2):231-240.
-
(2006)
Expert Systems with Applications
, vol.31
, Issue.2
, pp. 231-240
-
-
Huang, C.L.1
Wang, C.J.2
-
13
-
-
38049186397
-
New nonlinear principal analysis method based on RBF neural network
-
Jia M., Niu D., Wang F., Zhao C. New nonlinear principal analysis method based on RBF neural network. Journal of System Simulation 2007, 19(24):5684-5687.
-
(2007)
Journal of System Simulation
, vol.19
, Issue.24
, pp. 5684-5687
-
-
Jia, M.1
Niu, D.2
Wang, F.3
Zhao, C.4
-
14
-
-
41649105093
-
Nonlinear principal component analysis based on RBF neural network and principal curve
-
Jia M., Zhao C., Wang F., Mao Z., Li H. Nonlinear principal component analysis based on RBF neural network and principal curve. Chinese Journal of Science and Instrumentation 2008, 29(3):453-457.
-
(2008)
Chinese Journal of Science and Instrumentation
, vol.29
, Issue.3
, pp. 453-457
-
-
Jia, M.1
Zhao, C.2
Wang, F.3
Mao, Z.4
Li, H.5
-
16
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 1991, 37(2):233-243.
-
(1991)
AIChE Journal
, vol.37
, Issue.2
, pp. 233-243
-
-
Kramer, M.A.1
-
17
-
-
0023526237
-
Cross-validation in principal component analysis
-
Krzanowski W.J. Cross-validation in principal component analysis. Biometrics 1987, 43:575-584.
-
(1987)
Biometrics
, vol.43
, pp. 575-584
-
-
Krzanowski, W.J.1
-
18
-
-
3142761493
-
On the relationship between classical grid search and probabilistic roadmaps
-
LaValle S.M., Branicky M.S. On the relationship between classical grid search and probabilistic roadmaps. International Journal of Robotics Research 2002, 23(7-8):673-692.
-
(2002)
International Journal of Robotics Research
, vol.23
, Issue.7-8
, pp. 673-692
-
-
LaValle, S.M.1
Branicky, M.S.2
-
19
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science 2004, 59:223-234.
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
20
-
-
2442495227
-
Fault detection of batch processes using multiway kernel principal component analysis
-
Lee J.M., Yoo C.K., Lee I.B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering 2004, 28:1837-1847.
-
(2004)
Computers and Chemical Engineering
, vol.28
, pp. 1837-1847
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
21
-
-
64249101035
-
Moving window kernel PCA for adaptive monitoring of nonlinear processes
-
Liu X., Kruger U., Littler T., Xie L., Wang S. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometrics and Intelligent Laboratory Systems 2009, 96:132-143.
-
(2009)
Chemometrics and Intelligent Laboratory Systems
, vol.96
, pp. 132-143
-
-
Liu, X.1
Kruger, U.2
Littler, T.3
Xie, L.4
Wang, S.5
-
22
-
-
84898970836
-
Kernel PCA and de-noising in feature spaces
-
Mika S., Schölkopf B., Smola A.J., Muller K.R., Scholz M., Ratsch G. Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems 1999, 11:536-542.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.J.3
Muller, K.R.4
Scholz, M.5
Ratsch, G.6
-
23
-
-
84964114702
-
Symposium The need and means of cross-validation. Problems and designs of cross-validation
-
Mosier C.I. Symposium The need and means of cross-validation. Problems and designs of cross-validation. Educational and Psychological Measurement 1951, 11:5-11.
-
(1951)
Educational and Psychological Measurement
, vol.11
, pp. 5-11
-
-
Mosier, C.I.1
-
24
-
-
0000936320
-
Singular-value decomposition in attractor reconstruction: Pitfalls and precautions
-
Palus M., Dvorak I. Singular-value decomposition in attractor reconstruction: Pitfalls and precautions. Physica D 1992, 55:221-234.
-
(1992)
Physica D
, vol.55
, pp. 221-234
-
-
Palus, M.1
Dvorak, I.2
-
25
-
-
0032095724
-
Support vector machines for 3D object recognition
-
Pontil M., Verri A. Support vector machines for 3D object recognition. IEEE Transactions on Pattern Analysis 1998, 20(6):637-646.
-
(1998)
IEEE Transactions on Pattern Analysis
, vol.20
, Issue.6
, pp. 637-646
-
-
Pontil, M.1
Verri, A.2
-
26
-
-
10244247743
-
Nonlinear principal component analysis to preserve the order of principal components
-
Saegusa R., Sakano H., Hashimoto S. Nonlinear principal component analysis to preserve the order of principal components. Neurocomputing 2004, 61:57-70.
-
(2004)
Neurocomputing
, vol.61
, pp. 57-70
-
-
Saegusa, R.1
Sakano, H.2
Hashimoto, S.3
-
27
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
Schölkopf B., Mika S., Burges C.J.C., Knirsch P., Muller K.R., Ratsch G., et al. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 1999, 10(5):1000-1016.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1000-1016
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Muller, K.R.5
Ratsch, G.6
-
28
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B., Smola A.J., Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10(5):1299-1399.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1399
-
-
Schölkopf, B.1
Smola, A.J.2
Muller, K.3
-
29
-
-
0033230994
-
Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
-
Sergio V., Li W., Qin S.J. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods. Industrial and Engineering Chemistry Research 1999, 38:4389-4401.
-
(1999)
Industrial and Engineering Chemistry Research
, vol.38
, pp. 4389-4401
-
-
Sergio, V.1
Li, W.2
Qin, S.J.3
-
30
-
-
67349265618
-
Nonlinear process monitoring based on maximum variance unfolding projections
-
Shao J., Rong G. Nonlinear process monitoring based on maximum variance unfolding projections. Expert Systems with Applications 2009, 36:11332-11340.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 11332-11340
-
-
Shao, J.1
Rong, G.2
-
31
-
-
34548287979
-
Evolving kernel principal component analysis for fault diagnosis
-
Sun R., Tsung F., Qu L. Evolving kernel principal component analysis for fault diagnosis. Computers and Chemical Engineering 2007, 53:361-371.
-
(2007)
Computers and Chemical Engineering
, vol.53
, pp. 361-371
-
-
Sun, R.1
Tsung, F.2
Qu, L.3
-
32
-
-
0029322882
-
Reducing data dimensionality through optimizing neural network inputs
-
Tan S., Mayrovouniotis M.L. Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 1995, 41(6):1471-1480.
-
(1995)
AIChE Journal
, vol.41
, Issue.6
, pp. 1471-1480
-
-
Tan, S.1
Mayrovouniotis, M.L.2
-
34
-
-
84951601886
-
Cross-validatory estimation of the number of components in factor and principal components models
-
Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978, 20(4):397-405.
-
(1978)
Technometrics
, vol.20
, Issue.4
, pp. 397-405
-
-
Wold, S.1
-
36
-
-
58349084263
-
A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
-
Wua C.H., Tzeng G.H., Lin R.H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Systems with Applications 2009, 36:4725-4735.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 4725-4735
-
-
Wua, C.H.1
Tzeng, G.H.2
Lin, R.H.3
-
38
-
-
58749115727
-
Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
-
Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chemical Engineering Science 2009, 64:801-811.
-
(2009)
Chemical Engineering Science
, vol.64
, pp. 801-811
-
-
Zhang, Y.1
-
39
-
-
79151484699
-
Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes
-
Zhao M., Fu C., Ji L., Tang K., Zhou M. Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications 2011, 38(5):5197-5204.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.5
, pp. 5197-5204
-
-
Zhao, M.1
Fu, C.2
Ji, L.3
Tang, K.4
Zhou, M.5
|