메뉴 건너뛰기




Volumn 46, Issue , 2012, Pages 94-104

The optimization of the kind and parameters of kernel function in KPCA for process monitoring

Author keywords

Chemical processes; Fermentation; Genetic algorithm; Kernel function; KPCA; Optimization

Indexed keywords

CHEMICAL PROCESS; CROSSOVER AND MUTATION; DECISION VARIABLES; EVOLUTION PROCESS; FITNESS FUNCTIONS; GENETIC SELECTION; KERNEL FUNCTION; KERNEL PRINCIPAL COMPONENT ANALYSES (KPCA); KPCA; MULTI OBJECTIVE; OPTIMIZATION METHOD; PENICILLIN FERMENTATION PROCESS; POTENTIAL APPLICATIONS; PREDICTION ERRORS; PRINCIPAL COMPONENTS; SPECIFIC PROBLEMS; STATISTICAL CONTROL;

EID: 84864408795     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2012.06.023     Document Type: Article
Times cited : (59)

References (39)
  • 1
    • 77956414365 scopus 로고    scopus 로고
    • GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation
    • Adriano L.I.O., Petronio L.B., Ricardo M.F.L., Márcio L.C. GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation. Information and Software Technology 2010, 52(11):1155-1166.
    • (2010) Information and Software Technology , vol.52 , Issue.11 , pp. 1155-1166
    • Adriano, L.I.O.1    Petronio, L.B.2    Ricardo, M.F.L.3    Márcio, L.C.4
  • 2
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Choi J.H., Lee J.M., Choi S.W., Lee D., Lee I.B. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science 2005, 60(1):279-288.
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Choi, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.4    Lee, I.B.5
  • 4
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S.W., Lee I.B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science 2004, 59:5897-5908.
    • (2004) Chemical Engineering Science , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 5
    • 40949103011 scopus 로고    scopus 로고
    • Nonlinear multiscale modeling for fault detection and identification
    • Choi S.W., Morris J., Lee I.B. Nonlinear multiscale modeling for fault detection and identification. Chemical Engineering Science 2008, 63:2252-2266.
    • (2008) Chemical Engineering Science , vol.63 , pp. 2252-2266
    • Choi, S.W.1    Morris, J.2    Lee, I.B.3
  • 7
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal analysis based on principal cure and neural networks
    • Dong D., MaAvoy T.J. Nonlinear principal analysis based on principal cure and neural networks. Computers and Chemical Engineering 1996, 20(1):65-78.
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    MaAvoy, T.J.2
  • 8
    • 56349116904 scopus 로고    scopus 로고
    • Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM
    • Engin A. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM. Expert Systems with Applications 2009, 36:1391-1402.
    • (2009) Expert Systems with Applications , vol.36 , pp. 1391-1402
    • Engin, A.1
  • 9
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z., Yang C., Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science 2009, 64:2245-2255.
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 10
    • 0004063090 scopus 로고    scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Haykin S. Neural Networks 1999, Prentice-Hall, Englewood Cliffs, NJ.
    • (1999) Neural Networks
    • Haykin, S.1
  • 11
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machine
    • Hsu C.W., Lin C.J. A simple decomposition method for support vector machine. Machine Learning 2002, 46(1-3):219-314.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 219-314
    • Hsu, C.W.1    Lin, C.J.2
  • 12
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines Original Research Article
    • Huang C.L., Wang C.J. A GA-based feature selection and parameters optimization for support vector machines Original Research Article. Expert Systems with Applications 2006, 31(2):231-240.
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 13
    • 38049186397 scopus 로고    scopus 로고
    • New nonlinear principal analysis method based on RBF neural network
    • Jia M., Niu D., Wang F., Zhao C. New nonlinear principal analysis method based on RBF neural network. Journal of System Simulation 2007, 19(24):5684-5687.
    • (2007) Journal of System Simulation , vol.19 , Issue.24 , pp. 5684-5687
    • Jia, M.1    Niu, D.2    Wang, F.3    Zhao, C.4
  • 14
    • 41649105093 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on RBF neural network and principal curve
    • Jia M., Zhao C., Wang F., Mao Z., Li H. Nonlinear principal component analysis based on RBF neural network and principal curve. Chinese Journal of Science and Instrumentation 2008, 29(3):453-457.
    • (2008) Chinese Journal of Science and Instrumentation , vol.29 , Issue.3 , pp. 453-457
    • Jia, M.1    Zhao, C.2    Wang, F.3    Mao, Z.4    Li, H.5
  • 16
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 1991, 37(2):233-243.
    • (1991) AIChE Journal , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 17
    • 0023526237 scopus 로고
    • Cross-validation in principal component analysis
    • Krzanowski W.J. Cross-validation in principal component analysis. Biometrics 1987, 43:575-584.
    • (1987) Biometrics , vol.43 , pp. 575-584
    • Krzanowski, W.J.1
  • 18
    • 3142761493 scopus 로고    scopus 로고
    • On the relationship between classical grid search and probabilistic roadmaps
    • LaValle S.M., Branicky M.S. On the relationship between classical grid search and probabilistic roadmaps. International Journal of Robotics Research 2002, 23(7-8):673-692.
    • (2002) International Journal of Robotics Research , vol.23 , Issue.7-8 , pp. 673-692
    • LaValle, S.M.1    Branicky, M.S.2
  • 20
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering 2004, 28:1837-1847.
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 23
    • 84964114702 scopus 로고
    • Symposium The need and means of cross-validation. Problems and designs of cross-validation
    • Mosier C.I. Symposium The need and means of cross-validation. Problems and designs of cross-validation. Educational and Psychological Measurement 1951, 11:5-11.
    • (1951) Educational and Psychological Measurement , vol.11 , pp. 5-11
    • Mosier, C.I.1
  • 24
    • 0000936320 scopus 로고
    • Singular-value decomposition in attractor reconstruction: Pitfalls and precautions
    • Palus M., Dvorak I. Singular-value decomposition in attractor reconstruction: Pitfalls and precautions. Physica D 1992, 55:221-234.
    • (1992) Physica D , vol.55 , pp. 221-234
    • Palus, M.1    Dvorak, I.2
  • 25
    • 0032095724 scopus 로고    scopus 로고
    • Support vector machines for 3D object recognition
    • Pontil M., Verri A. Support vector machines for 3D object recognition. IEEE Transactions on Pattern Analysis 1998, 20(6):637-646.
    • (1998) IEEE Transactions on Pattern Analysis , vol.20 , Issue.6 , pp. 637-646
    • Pontil, M.1    Verri, A.2
  • 26
    • 10244247743 scopus 로고    scopus 로고
    • Nonlinear principal component analysis to preserve the order of principal components
    • Saegusa R., Sakano H., Hashimoto S. Nonlinear principal component analysis to preserve the order of principal components. Neurocomputing 2004, 61:57-70.
    • (2004) Neurocomputing , vol.61 , pp. 57-70
    • Saegusa, R.1    Sakano, H.2    Hashimoto, S.3
  • 28
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10(5):1299-1399.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1399
    • Schölkopf, B.1    Smola, A.J.2    Muller, K.3
  • 29
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Sergio V., Li W., Qin S.J. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods. Industrial and Engineering Chemistry Research 1999, 38:4389-4401.
    • (1999) Industrial and Engineering Chemistry Research , vol.38 , pp. 4389-4401
    • Sergio, V.1    Li, W.2    Qin, S.J.3
  • 30
    • 67349265618 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on maximum variance unfolding projections
    • Shao J., Rong G. Nonlinear process monitoring based on maximum variance unfolding projections. Expert Systems with Applications 2009, 36:11332-11340.
    • (2009) Expert Systems with Applications , vol.36 , pp. 11332-11340
    • Shao, J.1    Rong, G.2
  • 31
    • 34548287979 scopus 로고    scopus 로고
    • Evolving kernel principal component analysis for fault diagnosis
    • Sun R., Tsung F., Qu L. Evolving kernel principal component analysis for fault diagnosis. Computers and Chemical Engineering 2007, 53:361-371.
    • (2007) Computers and Chemical Engineering , vol.53 , pp. 361-371
    • Sun, R.1    Tsung, F.2    Qu, L.3
  • 32
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimizing neural network inputs
    • Tan S., Mayrovouniotis M.L. Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 1995, 41(6):1471-1480.
    • (1995) AIChE Journal , vol.41 , Issue.6 , pp. 1471-1480
    • Tan, S.1    Mayrovouniotis, M.L.2
  • 34
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978, 20(4):397-405.
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-405
    • Wold, S.1
  • 36
    • 58349084263 scopus 로고    scopus 로고
    • A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • Wua C.H., Tzeng G.H., Lin R.H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Systems with Applications 2009, 36:4725-4735.
    • (2009) Expert Systems with Applications , vol.36 , pp. 4725-4735
    • Wua, C.H.1    Tzeng, G.H.2    Lin, R.H.3
  • 38
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chemical Engineering Science 2009, 64:801-811.
    • (2009) Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 39
    • 79151484699 scopus 로고    scopus 로고
    • Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes
    • Zhao M., Fu C., Ji L., Tang K., Zhou M. Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications 2011, 38(5):5197-5204.
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 5197-5204
    • Zhao, M.1    Fu, C.2    Ji, L.3    Tang, K.4    Zhou, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.