메뉴 건너뛰기




Volumn 36, Issue 8, 2009, Pages 11332-11340

Nonlinear process monitoring based on maximum variance unfolding projections

Author keywords

Dimensionality reduction; Kernel matrix learning; Linear regression; Maximum variance unfolding projections; Process monitoring

Indexed keywords

COMPUTATIONAL COSTS; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; FAULT DETECTION AND IDENTIFICATION; FAULTY PROCESS; KERNEL FUNCTION; KERNEL MATRICES; KERNEL MATRIX LEARNING; KERNEL PRINCIPAL COMPONENT ANALYSIS; MANIFOLD LEARNING; MAXIMUM VARIANCE; MAXIMUM VARIANCE UNFOLDING PROJECTIONS; MONITORING METHODS; NONLINEAR PROCESS; NONLINEAR PROCESS MONITORING; OFF-LINE MODELING; ONLINE MONITORING; REDUCED SPACE; SIMULATION RESULT; TENNESSEE EASTMAN PROCESS; TRAINING SAMPLE;

EID: 67349265618     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.03.042     Document Type: Article
Times cited : (45)

References (30)
  • 1
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale pca with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale pca with application to multivariate statistical process monitoring. AIChE Journal 44 7 (1998) 1596-1610
    • (1998) AIChE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 3
    • 0033295981 scopus 로고    scopus 로고
    • Csdp, a c library for semidefinite programming
    • Borchers B. Csdp, a c library for semidefinite programming. Optimization Methods and Software 11 1 (1999) 613-623
    • (1999) Optimization Methods and Software , vol.11 , Issue.1 , pp. 613-623
    • Borchers, B.1
  • 4
    • 50649123949 scopus 로고    scopus 로고
    • Spectral regression for efficient regularized subspace learning
    • ICCV, Rio de Janeiro, Brazil pp, 2007
    • Cai, D., He, X., & Han, J. (2007). Spectral regression for efficient regularized subspace learning. In IEEE 11th international conference on computer vision, 2007. ICCV 2007, Rio de Janeiro, Brazil (pp. 1-8).
    • (2007) IEEE 11th international conference on computer vision , pp. 1-8
    • Cai, D.1    He, X.2    Han, J.3
  • 6
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S.W., and Lee I.B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science 59 24 (2004) 5897-5908
    • (2004) Chemical Engineering Science , vol.59 , Issue.24 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 8
  • 9
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • Dong D., and McAvoy T.J. Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering 20 1 (1996) 65-78
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 11
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37 2 (1991) 233-243
    • (1991) AIChE Journal , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 14
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J.M., Yoo C.K., and Lee I.B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering 28 9 (2004) 1837-1847
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.9 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 15
    • 0029256836 scopus 로고
    • Plant-wide control of the tennessee eastman problem
    • Lyman P.R., and Georgakis C. Plant-wide control of the tennessee eastman problem. Computers and Chemical Engineering 19 3 (1995) 321-331
    • (1995) Computers and Chemical Engineering , vol.19 , Issue.3 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 16
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J.F., and Kourti T. Statistical process control of multivariate processes. Control Engineering Practice 3 3 (1995) 403-414
    • (1995) Control Engineering Practice , vol.3 , Issue.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 17
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E.B., and Morris A.J. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control 6 6 (1996) 349-358
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 19
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., and MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AIChE Journal 40 8 (1994) 1361-1375
    • (1994) AIChE Journal , vol.40 , Issue.8 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 20
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics 17 8-9 (2003) 480-502
    • (2003) Journal of Chemometrics , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.J.1
  • 21
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariable continuous processes
    • Raich A., and Cinar A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE Journal 42 4 (1996) 995-1009
    • (1996) AIChE Journal , vol.42 , Issue.4 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 22
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., and Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 51 1 (2000) 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 23
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Saul L.K., Roweis S.T., and Singer Y. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4 2 (2004) 119-155
    • (2004) Journal of Machine Learning Research , vol.4 , Issue.2 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2    Singer, Y.3
  • 24
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholköpf B., Smola A., and Müller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 5 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholköpf, B.1    Smola, A.2    Müller, K.R.3
  • 25
    • 0033296299 scopus 로고    scopus 로고
    • Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones
    • Sturm J.F. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11 1 (1999) 625-653
    • (1999) Optimization Methods and Software , vol.11 , Issue.1 , pp. 625-653
    • Sturm, J.F.1
  • 27
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe L., and Boyd S. Semidefinite programming. SIAM Review 38 1 (1996) 49-95
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 29
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • Weinberger K.Q., and Saul L.K. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision 70 1 (2006) 77-90
    • (2006) International Journal of Computer Vision , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.