-
1
-
-
0039253819
-
Lof: Identifying density-based local outliers
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "Lof: identifying density-based local outliers," SIGMOD Rec., vol. 29, no. 2, pp. 93-104, 2000.
-
(2000)
SIGMOD Rec.
, vol.29
, Issue.2
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
2
-
-
0004236492
-
-
(3rd ed.). Baltimore, MD, USA: Johns Hopkins University Press
-
G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.). Baltimore, MD, USA: Johns Hopkins University Press, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
3
-
-
0034133513
-
Distance-based outliers: Algorithms and applications
-
E. M. Knorr, R. T. Ng, and V. Tucakov, "Distance-based outliers: algorithms and applications," The VLDB Journal, vol. 8, no. 3-4, pp. 237-253, 2000.
-
(2000)
The VLDB Journal
, vol.8
, Issue.3-4
, pp. 237-253
-
-
Knorr, E.M.1
Ng, R.T.2
Tucakov, V.3
-
4
-
-
4644223451
-
The amsterdam library of object images
-
J.-M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, "The amsterdam library of object images," International Journal of Computer Vision, vol. 61, no. 1, pp. 103-112, 2005.
-
(2005)
International Journal of Computer Vision
, vol.61
, Issue.1
, pp. 103-112
-
-
Geusebroek, J.-M.1
Burghouts, G.J.2
Smeulders, W.A.M.3
-
5
-
-
77952380096
-
Mining distance-based outliers in near linear time with randomization and a simple pruning rule
-
New York, NY, USA: ACM
-
S. D. Bay and M. Schwabacher, "Mining distance-based outliers in near linear time with randomization and a simple pruning rule," in KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA: ACM, 2003, pp. 29-38.
-
(2003)
KDD '03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 29-38
-
-
Bay, S.D.1
Schwabacher, M.2
-
6
-
-
1542292055
-
What is the nearest neighbor in high dimensional spaces?
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
-
A. Hinneburg, C. C. Aggarwal, and D. A. Keim, "What is the nearest neighbor in high dimensional spaces?" in VLDB '00: Proceedings of the 26th International Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 506-515.
-
(2000)
VLDB '00: Proceedings of the 26th International Conference on Very Large Data Bases
, pp. 506-515
-
-
Hinneburg, A.1
Aggarwal, C.C.2
Keim, D.A.3
-
7
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. B. Tenenbaum, V. d. Silva, and J. C. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
8
-
-
0345359208
-
Loci: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, "Loci: Fast outlier detection using the local correlation integral," in ICDE, 2003.
-
(2003)
ICDE
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.B.3
Faloutsos, C.4
-
9
-
-
0035788909
-
Mining top-n local outliers in large databases
-
New York, NY, USA: ACM
-
W. Jin, A. K. H. Tung, and J. Han, "Mining top-n local outliers in large databases," in KDD '01: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA: ACM, 2001, pp. 293-298.
-
(2001)
KDD '01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 293-298
-
-
Jin, W.1
Tung, A.K.H.2
Han, J.3
-
10
-
-
0031644241
-
Approximate nearest neighbors: Towards removing the curse of dimensionality
-
New York, NY, USA: ACM
-
P. Indyk and R. Motwani, "Approximate nearest neighbors: towards removing the curse of dimensionality," in STOC '98: Proceedings of the thirtieth annual ACM symposium on Theory of computing. New York, NY, USA: ACM, 1998, pp. 604-613.
-
(1998)
STOC '98: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing
, pp. 604-613
-
-
Indyk, P.1
Motwani, R.2
-
11
-
-
28444491040
-
Fast approximate similarity search in extremely high-dimensional data sets
-
Proceedings - 21st International Conference on Data Engineering, ICDE 2005
-
M. E. Houle and J. Sakuma, "Fast approximate similarity search in extremely high-dimensional data sets," in ICDE, 2005, pp. 619-630. (Pubitemid 41731188)
-
(2005)
Proceedings - International Conference on Data Engineering
, pp. 619-630
-
-
Houle, M.E.1
Sakuma, J.2
-
12
-
-
73849087914
-
Outlier detection in axis-parallel subspaces of high dimensional data
-
Bangkok, Thailand
-
H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, "Outlier detection in axis-parallel subspaces of high dimensional data," in Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand, 2009.
-
(2009)
Proceedings of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
-
-
Kriegel, H.-P.1
Kröger, P.2
Schubert, E.3
Zimek, A.4
-
13
-
-
34248183970
-
Fast principal component analysis using fixed-point algorithm
-
DOI 10.1016/j.patrec.2007.01.012, PII S0167865507000438
-
A. Sharma and K. K. Paliwal, "Fast principal component analysis using fixed-point algorithm," Pattern Recognition Letters, vol. 28, no. 10, pp. 1151-1155, 2007. (Pubitemid 46710169)
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.10
, pp. 1151-1155
-
-
Sharma, A.1
Paliwal, K.K.2
-
14
-
-
38449115187
-
Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification
-
DOI 10.1109/ICMLA.2006.43, 4041499, Proceedings - 5th International Conference on Machine Learning and Applications, ICMLA 2006
-
S. Deegalla and H. Bostrom, "Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification," in ICMLA '06: Proceedings of the 5th International Conference on Machine Learning and Applications. Washington, DC, USA: IEEE Computer Society, 2006, pp. 245-250. (Pubitemid 351337064)
-
(2006)
Proceedings - 5th International Conference on Machine Learning and Applications, ICMLA 2006
, pp. 245-250
-
-
Deegalla, S.1
Bostrom, H.2
-
15
-
-
0001654702
-
Extensions of lipschitz mappings into a hilbert space
-
Conference in modern analysis and probability (New Haven, Conn.)
-
W. B. Johnson and J. Lindenstrauss, "Extensions of lipschitz mappings into a hilbert space," in Conference in modern analysis and probability (New Haven, Conn.). Amer. Math. Soc., 1982, pp. 189-206.
-
(1982)
Amer. Math. Soc.
, pp. 189-206
-
-
Johnson, W.B.1
Lindenstrauss, J.2
-
16
-
-
0003733695
-
An elementary proof of the johnson-lindenstrauss lemma
-
S. Dasgupta and A. Gupta, "An elementary proof of the johnson-lindenstrauss lemma," International Computer Science Institute, Berkeley, CA, Technical Report TR-99-006, 1999.
-
(1999)
International Computer Science Institute, Berkeley, CA, Technical Report TR-99-006
-
-
Dasgupta, S.1
Gupta, A.2
-
19
-
-
85034770868
-
A geometric consistency theorem for a symbolic perturbation scheme
-
New York, NY, USA: ACM
-
C. K. Yap, "A geometric consistency theorem for a symbolic perturbation scheme," in SCG '88: Proceedings of the fourth annual symposium on Computational geometry. New York, NY, USA: ACM, 1988, pp. 134-142.
-
(1988)
SCG '88: Proceedings of the Fourth Annual Symposium on Computational Geometry
, pp. 134-142
-
-
Yap, C.K.1
|