-
1
-
-
0029653518
-
-
R. D. Fleischmann et al., Science 269, 496 (1995); A. Goffeau et al., ibid. 274, 546 (1996); R. A. Gibbs, Nature Genet. 11, 121 (1995). J. L. Weber and E. W. Myers, Genome Res. 7, 401 (1997). P. Green, ibid., p. 410.
-
(1995)
Science
, vol.269
, pp. 496
-
-
Fleischmann, R.D.1
-
2
-
-
10244239321
-
-
R. D. Fleischmann et al., Science 269, 496 (1995); A. Goffeau et al., ibid. 274, 546 (1996); R. A. Gibbs, Nature Genet. 11, 121 (1995). J. L. Weber and E. W. Myers, Genome Res. 7, 401 (1997). P. Green, ibid., p. 410.
-
(1996)
Science
, vol.274
, pp. 546
-
-
Goffeau, A.1
-
3
-
-
0029161597
-
-
R. D. Fleischmann et al., Science 269, 496 (1995); A. Goffeau et al., ibid. 274, 546 (1996); R. A. Gibbs, Nature Genet. 11, 121 (1995). J. L. Weber and E. W. Myers, Genome Res. 7, 401 (1997). P. Green, ibid., p. 410.
-
(1995)
Nature Genet.
, vol.11
, pp. 121
-
-
Gibbs, R.A.1
-
4
-
-
0030950735
-
-
R. D. Fleischmann et al., Science 269, 496 (1995); A. Goffeau et al., ibid. 274, 546 (1996); R. A. Gibbs, Nature Genet. 11, 121 (1995). J. L. Weber and E. W. Myers, Genome Res. 7, 401 (1997). P. Green, ibid., p. 410.
-
(1997)
Genome Res.
, vol.7
, pp. 401
-
-
Weber, J.L.1
Myers, E.W.2
-
5
-
-
0029653518
-
-
R. D. Fleischmann et al., Science 269, 496 (1995); A. Goffeau et al., ibid. 274, 546 (1996); R. A. Gibbs, Nature Genet. 11, 121 (1995). J. L. Weber and E. W. Myers, Genome Res. 7, 401 (1997). P. Green, ibid., p. 410.
-
Genome Res.
, pp. 410
-
-
Green, P.1
-
6
-
-
0029653653
-
-
I. M. Chumakov et al., Nature 373 (suppl.), 175 (1995); C. Boysen, M. I. Simon, L. Hood, Genome Res. 7, 330 (1997).
-
(1995)
Nature
, vol.373
, Issue.SUPPL.
, pp. 175
-
-
Chumakov, I.M.1
-
7
-
-
0030895401
-
-
I. M. Chumakov et al., Nature 373 (suppl.), 175 (1995); C. Boysen, M. I. Simon, L. Hood, Genome Res. 7, 330 (1997).
-
(1997)
Genome Res.
, vol.7
, pp. 330
-
-
Boysen, C.1
Simon, M.I.2
Hood, L.3
-
9
-
-
0027485082
-
-
D. C. Schwartz et al., Science 262, 110 (1994); X. Meng, K. Benson, K. Chada, E. J. Huff, D. C. Schwartz, Nature Genet. 9, 432 (1995); H. Yokota et al., Nucleic Acids Res. 22, 1064 (1997).
-
(1994)
Science
, vol.262
, pp. 110
-
-
Schwartz, D.C.1
-
10
-
-
0028950997
-
-
D. C. Schwartz et al., Science 262, 110 (1994); X. Meng, K. Benson, K. Chada, E. J. Huff, D. C. Schwartz, Nature Genet. 9, 432 (1995); H. Yokota et al., Nucleic Acids Res. 22, 1064 (1997).
-
(1995)
Nature Genet.
, vol.9
, pp. 432
-
-
Meng, X.1
Benson, K.2
Chada, K.3
Huff, E.J.4
Schwartz, D.C.5
-
11
-
-
0030842452
-
-
D. C. Schwartz et al., Science 262, 110 (1994); X. Meng, K. Benson, K. Chada, E. J. Huff, D. C. Schwartz, Nature Genet. 9, 432 (1995); H. Yokota et al., Nucleic Acids Res. 22, 1064 (1997).
-
(1997)
Nucleic Acids Res.
, vol.22
, pp. 1064
-
-
Yokota, H.1
-
12
-
-
0026951224
-
-
J. Wiegant et al., Hum. Mol. Genet. 1, 587 (1992); T. Haaf and D. C. Ward, ibid. 3, 697 (1994); R. J. Florijn et al., ibid. 5, 831 (1995); I. Parra, B. Windle, Nature Genet. 5, 17 (1993).
-
(1992)
Hum. Mol. Genet.
, vol.1
, pp. 587
-
-
Wiegant, J.1
-
13
-
-
0028174765
-
-
J. Wiegant et al., Hum. Mol. Genet. 1, 587 (1992); T. Haaf and D. C. Ward, ibid. 3, 697 (1994); R. J. Florijn et al., ibid. 5, 831 (1995); I. Parra, B. Windle, Nature Genet. 5, 17 (1993).
-
(1994)
Hum. Mol. Genet.
, vol.3
, pp. 697
-
-
Haaf, T.1
Ward, D.C.2
-
14
-
-
0028989174
-
-
J. Wiegant et al., Hum. Mol. Genet. 1, 587 (1992); T. Haaf and D. C. Ward, ibid. 3, 697 (1994); R. J. Florijn et al., ibid. 5, 831 (1995); I. Parra, B. Windle, Nature Genet. 5, 17 (1993).
-
(1995)
Hum. Mol. Genet.
, vol.5
, pp. 831
-
-
Florijn, R.J.1
-
15
-
-
0027179475
-
-
J. Wiegant et al., Hum. Mol. Genet. 1, 587 (1992); T. Haaf and D. C. Ward, ibid. 3, 697 (1994); R. J. Florijn et al., ibid. 5, 831 (1995); I. Parra, B. Windle, Nature Genet. 5, 17 (1993).
-
(1993)
Nature Genet.
, vol.5
, pp. 17
-
-
Parra, I.1
Windle, B.2
-
16
-
-
0027137384
-
-
H. Fidlerova, G. Senger, M. Kost, P. Sanseau, D. Sheer, Cytogenet. Cell Genet. 65, 203 (1994); G. Senger et al., Hum. Mol. Genet. 3, 1275 (1994); M. Heiskanen et al., Genomics 30, 31 (1995).
-
(1994)
Cytogenet. Cell Genet.
, vol.65
, pp. 203
-
-
Fidlerova, H.1
Senger, G.2
Kost, M.3
Sanseau, P.4
Sheer, D.5
-
17
-
-
0027935181
-
-
H. Fidlerova, G. Senger, M. Kost, P. Sanseau, D. Sheer, Cytogenet. Cell Genet. 65, 203 (1994); G. Senger et al., Hum. Mol. Genet. 3, 1275 (1994); M. Heiskanen et al., Genomics 30, 31 (1995).
-
(1994)
Hum. Mol. Genet.
, vol.3
, pp. 1275
-
-
Senger, G.1
-
18
-
-
0028823968
-
-
H. Fidlerova, G. Senger, M. Kost, P. Sanseau, D. Sheer, Cytogenet. Cell Genet. 65, 203 (1994); G. Senger et al., Hum. Mol. Genet. 3, 1275 (1994); M. Heiskanen et al., Genomics 30, 31 (1995).
-
(1995)
Genomics
, vol.30
, pp. 31
-
-
Heiskanen, M.1
-
19
-
-
0028353764
-
-
B. Pertl et al., Lancet 343, 1197 (1994); M.-C. Cheung, J. D. Goldberg, Y. W. Kan, Nature Genet. 14, 264 (1996).
-
(1994)
Lancet
, vol.343
, pp. 1197
-
-
Pertl, B.1
-
20
-
-
0030293185
-
-
B. Pertl et al., Lancet 343, 1197 (1994); M.-C. Cheung, J. D. Goldberg, Y. W. Kan, Nature Genet. 14, 264 (1996).
-
(1996)
Nature Genet.
, vol.14
, pp. 264
-
-
Cheung, M.-C.1
Goldberg, J.D.2
Kan, Y.W.3
-
22
-
-
0028032302
-
-
A. Bensimon et al., Science 265, 2096 (1994); D. Bensimon, A. J. Simon, V. Croquette, A. Bensimon, Phys. Rev. Lett. 76, 4754 (1995).
-
(1994)
Science
, vol.265
, pp. 2096
-
-
Bensimon, A.1
-
23
-
-
0000734376
-
-
A. Bensimon et al., Science 265, 2096 (1994); D. Bensimon, A. J. Simon, V. Croquette, A. Bensimon, Phys. Rev. Lett. 76, 4754 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.76
, pp. 4754
-
-
Bensimon, D.1
Simon, A.J.2
Croquette, V.3
Bensimon, A.4
-
24
-
-
15444350495
-
-
X. Michalet A. Bensimon, data not shown
-
X. Michalet and A. Bensimon, data not shown.
-
-
-
-
25
-
-
15444355504
-
-
in press
-
J.-F. Allemand, D. Bensimon, L. Jullien, A. Bensimon, V. Croquette, Biophys. J., in press.
-
Biophys. J.
-
-
Allemand, J.-F.1
Bensimon, D.2
Jullien, L.3
Bensimon, A.4
Croquette, V.5
-
26
-
-
15444356351
-
-
Humana, Totowa, NJ
-
2 [40 mM tris/2 mM EDTA (pH 8)] in 2-ml Eppendorf tubes for 1 hour at room temperature (RT). After staining, the supernatant was discarded and each agarose block was melted for 20 min in 500 μl of TE buffer at 68°C, then digested for 2 hours or overnight at 40°C with 2 U of β-agarase I in 1 × NEB agarase buffer (New England Biolabs). Dilution of the DNA (yeast, 0.25 μg/ml; human, 1.5 μg/ml) in MES (pH 5.5) [yeast, 50 mM; human, 150 mM (final concentrations)] was performed very carefully in 15-ml round-bottomed tubes (Falcon) in order to avoid breakage of the DNA strands. Because of high DNA concentrations in the human DNA preparations, suspension of the DNA had to be aided by heating the solution to 75°C for 30 min, then cooling to RT before transfer to a reservoir. The DNA solution was poured into a Teflon™ reservoir of appropriate size. Up to three silanized 22 mm by 22 mm cover slips could be introduced in a 4-ml reservoir. The DNA solution can be stored at 4°C for several weeks. Combed DNA cover slips (see text and Fig. 1) were examined with an inverted epifluorescence microscope (Axiovert 135, Zeiss) equipped with filter for green emission (XF 22, Omega Optical). Surfaces with DNA density as shown in Fig. 1 were used in fluorescent hybridization experiments. Before use, DNA cover slips were dried at 60°C overnight, mounted on microscope slides with cyanoacrylate glue, and used immediately or stored (-20°C) in plastic slide holders. DNA cover slips have been stored at RT for up to 6 months before use in FISH experiments without any deterioration in the quality of the hybridization or quantity of signals (34).
-
(1996)
Yeast Protocols: Methods in Cell and Molecular Biology, Vol. 53 of Methods in Molecular Biology
, vol.53
, pp. 71
-
-
Evans, I.H.1
-
27
-
-
15444353727
-
-
note
-
Shorter incubation times (30 s) of the slides in the DNA solution have also been used successfully, implying that the kinetics of DNA binding is probably very fast, with a rapid saturation of all accessible binding sites. The quality of combing does not depend on the speed at which cover slips are pulled out of the DNA solution [speeds of up to 500 μm/s have been used (10)].
-
-
-
-
28
-
-
15444345517
-
-
note
-
This parameter is constant for each batch of treated surfaces. For unexplained reasons, a few batches with a stretching factor of 2.3 kb/μm have sometimes also been observed. Hence, systematic measurements of λ-DNA molecules were performed on a few surfaces per batch (each batch containing 72 surfaces). Surface treatment inhomogeneities on each cover slip may occur and lead to local variations in the surface density of combed molecules, or in the stretching factor. However, these inhomogeneities have no effect on the final results obtained on a large number of measurements, as shown by their small standard deviation (see text). Residual surface defects may also result in transient pinning of the meniscus, leading to a local deformation of the normally straight interface. It can be detected as a local departure from parallelism, but has no effect on the stretching factor. The validity of this factor for a wide range of DNA sizes was shown by measurement of molecules ranging from ∼50 kb to ∼250 kb (11) and by redundant measurements of cosmid distances (21).
-
-
-
-
29
-
-
15444350779
-
-
note
-
The number of combed genomes is estimated from the mean DNA length per field of view, the theoretical length of a combed genome, and the number of fields of view per cover slip. The size distribution of the fragments cannot be systematically measured because the extension of fibers over several fields of view and their density render it a cumbersome analysis. The mean length given here is a qualitative order of magnitude. Among these long fibers, a significant proportion of fragments have lengths over several megabases.
-
-
-
-
31
-
-
15444351250
-
-
note
-
Probe labeling: all probes consisted of genomic DNA cloned in cosmids. Cosmids were grown and DNA extracted with a scaled-up alkaline lysis method (3). Each probe (1 μg) was labeled by random priming with either biotin-14-deoxycytosine triphosphate (Bioprime kit, Gibco-BRL) or digoxigenin-11-deoxyuridine triphosphate (DIG, Boehringer) according to manufacturer's instructions. Ethanol-precipitated probes were resuspended in 50 μl of 10 mM tris/1 mM EDTA (pH 8) and stored at -20°C. Concentrations were estimated by densitometry on a 0.6% agarose gel. Probes labeled by nick-translation have also been used. We again ethanol precipitated 500 to 600 ng of each labeled probe in the presence of 5× excess human COT-1 DNA (except when hybridizing on yeast DNA, for which no COT-1 was used) and 20 μg of herring sperm DNA at -70°C for 1 hour. After centrifugation, the pellet was dried for 10 min, then resuspended in 10 μl of hybridization mixture [50% formamide, 10% dextran sulfate, 2× saline sodium citrate (SSC), and 1% Tween-20]. Resuspended probes were denatured (5 min in boiling water), snap-cooled, and left on ice until needed. Slides: Combed DNA cover slips mounted on microscope slides were equilibrated to RT, dehydrated through ethanol series (70%, 90%, 100%) three times of 3 min each, air-dried, denatured in 50% formamide/ 2× SSC (pH 7.0) at 75°C for 2 min, then quenched in ice-cold ethanol series and air dried. Hybridization: Denatured probes were incubated with combed DNA at 37°C under an ordinary glass cover slip, with the edges sealed with rubber cement, for at least 16 hours. Detection: All slides were washed at RT on a shaker as follows: three washes of 5 min in 50% formamide/2× SSC (pH 7) and three washes of 5 min in 2× SSC. We applied 50 μl of 1.5% blocking solution (Boehringer) on each DNA cover slip and incubated them at 37°C for 30 min in a moist chamber. Biotinylated and DIG-labeled probes were detected with Texas red and FITC, respectively, using five successive layers of antibodies as follows: (i) avidin-Texas red 1/50 (Vector Labs) + anti-DIG-FITC (mouse) 1/50 (Jackson ImmunoResearch Labs); (ii) biotinylated anti-avidin 1/100 (Vector Labs) + anti-mouse-FITC (donkey) 1/50 (Jackson ImmunoResearch); (iii) avidin-Texas red 1/50 + anti-rabbit (mouse) 1/50 (Jackson ImmunoResearch); (iv) biotinylated anti-avidin 1/100 + F1 (anti-FITC; Cambio) 1/400; and (v) avidin-Texas red 1/50 + F2 (anti-anti-FITC; Cambio) 1/100. The last two layers were necessary to increase the intensity of the signals. All antibody incubations were at 37°C; the first three were for 30 min each and the last two for 20 min each. All antibody washes were for three times of 5 min at RT using 4× SSC/0.05% Tween-20. A final wash in PBS was performed, and the slides were drained and mounted in Vectashield (Vector Labs) without counterstain.
-
-
-
-
32
-
-
0028038980
-
-
F. Fougerousse et al., Hum. Mol. Genet. 2, 285 (1994); I. Richard, C. Roudaut, F. Fougerousse, N. Chiannilkuchai, J. S. Beckmann, Mamm. Genome 6, 754 (1995); I. Richard et al., Cell 81, 27 (1995).
-
(1994)
Hum. Mol. Genet.
, vol.2
, pp. 285
-
-
Fougerousse, F.1
-
33
-
-
0029383966
-
-
F. Fougerousse et al., Hum. Mol. Genet. 2, 285 (1994); I. Richard, C. Roudaut, F. Fougerousse, N. Chiannilkuchai, J. S. Beckmann, Mamm. Genome 6, 754 (1995); I. Richard et al., Cell 81, 27 (1995).
-
(1995)
Mamm. Genome
, vol.6
, pp. 754
-
-
Richard, I.1
Roudaut, C.2
Fougerousse, F.3
Chiannilkuchai, N.4
Beckmann, J.S.5
-
34
-
-
0028905205
-
-
F. Fougerousse et al., Hum. Mol. Genet. 2, 285 (1994); I. Richard, C. Roudaut, F. Fougerousse, N. Chiannilkuchai, J. S. Beckmann, Mamm. Genome 6, 754 (1995); I. Richard et al., Cell 81, 27 (1995).
-
(1995)
Cell
, vol.81
, pp. 27
-
-
Richard, I.1
-
35
-
-
15444338557
-
-
note
-
At this concentration, the DNA solution behaves like a polymer melt, and no fast drying can be expected if a drop of solution is deposited on a cover slip as described (9, 16). Moreover, the unbound molecules entangled in the polymer mesh of other molecules are forced to dry on the surface, which results in uncombed patches of DNA. Manipulation of the DNA would also contribute to intense shearing, which is eliminated by the use of a fixed reservoir and the molecular combing apparatus described in Fig. 1A.
-
-
-
-
36
-
-
15444346813
-
-
note
-
For small distances between two probes (<30 kb), >50% of the pairs of aligned red and green cosmid signals were complete. Inversely, in most pairs of cosmids separated by longer distances, one or both cosmids were detected as incomplete signals (21). This is due to an increased probability of finding a broken DNA fragment in the region studied (and hence, partial hybridization signals). In such cases, the size of each cosmid was reliably determined because we also included measurements of isolated, complete cosmid signals in our analysis.
-
-
-
-
37
-
-
15444357623
-
-
in preparation
-
X. Michalet et al., in preparation.
-
-
-
Michalet, X.1
-
38
-
-
15444344037
-
-
note
-
Redundant measurements consist of measuring the distance between cosmid A and B, the distance between B and C, and the distance between A and C in three different hybridization assays. Any stretching inhomogeneity would give different results for the distance between A and C, as obtained from the sum of the first two hybridizations and from the direct measurement of the third one. A perfect agreement was observed in all independent tests (over a 200-kb region), which allowed us to convert mean sizes measured in micrometers to sizes measured in kilobases, without needing to refer to an internal control. Direct measurements have standard deviations of 6 to 11%. The gap size was measured indirectly from two measurements, which led to a larger standard deviation (21).
-
-
-
-
39
-
-
15444338681
-
-
note
-
The maximum extent over which this approach can be used is restricted mainly by the size of the microscope field of view (which can be increased using smaller magnification objectives at the expense of visibility of fluorescent signals) and by the difficulty to assess whether two apparently distant and aligned signals belong to the same fiber or not, setting a practical distance limit of a few hundred kilobases [400 kb, 40× objective (21)]. Detection of the underlying DNA fiber with another fluorochrome (16) does not resolve this ambiguity when the density of combed fibers is too high, because of the possible confusion between close fibers (21). Hybridization of several probes together, detected with multicolor fluorescent systems, would decrease the number of hybridizations and the scanning time necessary for the construction of large high-resolution physical maps, contrary to optical mapping techniques that require one experiment per clone.
-
-
-
-
41
-
-
0027770784
-
The European Chromosome 16 Tuberous Sclerosis Consortium
-
The European Chromosome 16 Tuberous Sclerosis Consortium, Cell 75, 1305 (1993); M. van Slegtenhorst et al., Science 277, 805 (1997).
-
(1993)
Cell
, vol.75
, pp. 1305
-
-
-
42
-
-
0030879277
-
-
The European Chromosome 16 Tuberous Sclerosis Consortium, Cell 75, 1305 (1993); M. van Slegtenhorst et al., Science 277, 805 (1997).
-
(1997)
Science
, vol.277
, pp. 805
-
-
Van Slegtenhorst, M.1
-
43
-
-
0029054545
-
-
J. Nahmias et al., Eur. J. Hum. Genet. 3, 65 (1995); M. van Slegtenhorst et al., ibid., p. 78.
-
(1995)
Eur. J. Hum. Genet.
, vol.3
, pp. 65
-
-
Nahmias, J.1
-
45
-
-
15444340578
-
-
data not shown
-
This yield of about 50 to 100 pairs of hybridized cosmids is in agreement with the rough estimate of DNA density of, at most, a few hundred combed genomes per slide (14). The total number of genomes as estimated, also including the incomplete and isolated signals, is indeed much closer to the one estimated from combing density, thus showing a satisfactory hybridization efficiency (R. Ekong and X. Michalet, data not shown; J. Herrick et al., in preparation).
-
-
-
Ekong, R.1
Michalet, X.2
-
46
-
-
15444344381
-
-
in preparation
-
This yield of about 50 to 100 pairs of hybridized cosmids is in agreement with the rough estimate of DNA density of, at most, a few hundred combed genomes per slide (14). The total number of genomes as estimated, also including the incomplete and isolated signals, is indeed much closer to the one estimated from combing density, thus showing a satisfactory hybridization efficiency (R. Ekong and X. Michalet, data not shown; J. Herrick et al., in preparation).
-
-
-
Herrick, J.1
-
47
-
-
15444359767
-
-
note
-
In both experiments, comparison of measurements done on different slides (slides prepared on different days but from the same DNA solution or from different DNA agarose blocks using either the same or different batches of silanized cover slips) gave similar results.
-
-
-
-
48
-
-
0028289473
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1994)
Nature Genet.
, vol.6
, pp. 193
-
-
Green, A.J.1
Smith, M.2
Yates, J.R.W.3
-
49
-
-
0030891545
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1997)
Genes Chromosomes Cancer
, vol.18
, pp. 181
-
-
Niederacher, D.1
-
50
-
-
0030939571
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1997)
Genes Chromosomes Cancer
, vol.18
, pp. 162
-
-
Lastowska, M.1
-
51
-
-
0026495364
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1992)
Science
, vol.258
, pp. 818
-
-
Kallioniemi, A.1
-
52
-
-
0038214755
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1996)
Science
, vol.273
, pp. 494
-
-
Schröck, E.1
-
53
-
-
0029912473
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1996)
Nature Genet.
, vol.12
, pp. 368
-
-
Speicher, M.R.1
Ballard, S.G.2
Ward, D.C.3
-
54
-
-
0030909689
-
-
A. J. Green, M. Smith, J. R. W. Yates, Nature Genet. 6, 193 (1994); D. Niederacher et al., Genes Chromosomes Cancer 18, 181 (1997); M. Lastowska et al., ibid. 18, 162 (1997); A. Kallioniemi et al., Science 258, 818 (1992); E. Schröck et al., ibid. 273, 494 (1996); M. R. Speicher, S. G. Ballard, D. C. Ward, Nature Genet. 12, 368 (1996); T. Veldman, C. Vignon, E. Schröck, J. D. Rowley, T. Ried, ibid. 15, 406 (1997).
-
(1997)
Nature Genet.
, vol.15
, pp. 406
-
-
Veldman, T.1
Vignon, C.2
Schröck, E.3
Rowley, J.D.4
Ried, T.5
-
56
-
-
15444360651
-
-
personal communication
-
J. Sampson, personal communication.
-
-
-
Sampson, J.1
-
57
-
-
15444342161
-
-
data not shown
-
A. Bensimon, data not shown.
-
-
-
Bensimon, A.1
-
58
-
-
0030910465
-
-
J. J. Harrington, G. van Bokkelen, R. W. Mays, K. Gustashaw, H. F. Willard, Nature Genet. 15, 345 (1997). K. Tomizuka et al., ibid. 16, 133 (1997).
-
(1997)
Nature Genet.
, vol.15
, pp. 345
-
-
Harrington, J.J.1
Van Bokkelen, G.2
Mays, R.W.3
Gustashaw, K.4
Willard, H.F.5
-
59
-
-
0030965015
-
-
J. J. Harrington, G. van Bokkelen, R. W. Mays, K. Gustashaw, H. F. Willard, Nature Genet. 15, 345 (1997). K. Tomizuka et al., ibid. 16, 133 (1997).
-
(1997)
Nature Genet.
, vol.16
, pp. 133
-
-
Tomizuka, K.1
-
61
-
-
15444356586
-
-
data not shown
-
R. Ekong, data not shown.
-
-
-
Ekong, R.1
-
62
-
-
15444340083
-
-
note
-
X.M. benefited from a Pasteur-Weizmann grant, S.R. from a Wellcome Trust grant, and M.V.S. from support by the Dutch Organisation for Scientific Research. We thank A. Chiffaudel for technical help in the development of the combing apparatus, J. Sampson and P. Harris for providing us with TSC2 probes and patient cell lines, and J. Nahmias for unpublished data on the TSC1 contig. Supported in part by the Association Française contre les Myopathies. Dedicated to A. Ullmann for constant support throughout this project.
-
-
-
|