-
1
-
-
52149089721
-
Brain-computer interfaces based on visual evoked potentials
-
Sep.-Oct
-
B. Y. Wang, X. Gao, B. Hong, C. Jia, and S. Gao, "Brain-computer interfaces based on visual evoked potentials," IEEE Eng. Med. Biol. Mag., vol. 27, no. 5, pp. 64-71, Sep.-Oct. 2008.
-
(2008)
IEEE Eng. Med. Biol. Mag.
, vol.27
, Issue.5
, pp. 64-71
-
-
Wang, B.Y.1
Gao, X.2
Hong, B.3
Jia, C.4
Gao, S.5
-
2
-
-
79955412608
-
Brain-computer interfaces for communication and control
-
D. J. McFarland and J. R. Wolpaw, "Brain-computer interfaces for communication and control," Commun. ACM, vol. 54, no. 5, pp. 60-66, 2011.
-
(2011)
Commun. ACM
, vol.54
, Issue.5
, pp. 60-66
-
-
McFarland, D.J.1
Wolpaw, J.R.2
-
3
-
-
33646561586
-
Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
-
DOI 10.1016/j.neuroimage.2005.12.003, PII S1053811905025140
-
G. Pfurtscheller, C. Brunner, A. Schlogl, and F. Lopes da Silva, "Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks," Neuroimage, vol. 31, no. 1, pp. 153-159, 2006. (Pubitemid 43729000)
-
(2006)
NeuroImage
, vol.31
, Issue.1
, pp. 153-159
-
-
Pfurtscheller, G.1
Brunner, C.2
Schlogl, A.3
Lopes Da Silva, F.H.4
-
4
-
-
77953131563
-
A polynomial fitting and k-nn based approach for improving classification ofmotor imagery bci data
-
T. Kayikcioglu and O. Aydemir, "A polynomial fitting and k-NN based approach for improving classification ofmotor imagery BCI data," Pattern Recognit. Lett., vol. 31, pp. 1207-1215, 2010.
-
(2010)
Pattern Recognit. Lett.
, vol.31
, pp. 1207-1215
-
-
Kayikcioglu, T.1
Aydemir, O.2
-
5
-
-
85032751688
-
Optimizing spatial filters for robust eeg single-trial analysis
-
B. Blankertz, R. Tomioka, S. Lemm,M. Kawanable, and K. R. Muller, "Optimizing spatial filters for robust EEG single-trial analysis," IEEE Signal Process. Mag., vol. 25, no. 1, pp. 41-56, 2008.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.1
, pp. 41-56
-
-
Blankertz, B.1
Tomioka, R.2
Lemm, S.3
Kawanable, M.4
Muller, K.R.5
-
6
-
-
67349201202
-
Beamforming in noninvasive brain-computer interfaces
-
Apr
-
M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming in noninvasive brain-computer interfaces," IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1209-1219, Apr. 2009.
-
(2009)
IEEE Trans. Biomed. Eng.
, vol.56
, Issue.4
, pp. 1209-1219
-
-
Grosse-Wentrup, M.1
Liefhold, C.2
Gramann, K.3
Buss, M.4
-
7
-
-
44349107795
-
Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)
-
DOI 10.1109/TBME.2008.919125, 14
-
W. Wu, X. Gao, B. Hong, and S. Gao, "Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)," IEEE Trans. Biomed. Eng., vol. 55, no. 6, pp. 1733-1743, Jun. 2008. (Pubitemid 351728022)
-
(2008)
IEEE Transactions on Biomedical Engineering
, vol.55
, Issue.6
, pp. 1733-1743
-
-
Wu, W.1
Gao, X.2
Hong, B.3
Gao, S.4
-
8
-
-
77956058249
-
A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces
-
J. Long, Y. Li, and Z. Yu, "A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces," Cognitive Neurodynamics, vol. 4, pp. 207-216, 2010.
-
(2010)
Cognitive Neurodynamics
, vol.4
, pp. 207-216
-
-
Long, J.1
Li, Y.2
Yu, Z.3
-
9
-
-
77951450909
-
Automated selecting subset of channels based on csp in motor imagery brain-computer system
-
Guilin, China, Dec. 19-23
-
J. Meng, G. Liu, G. Huang, and X. Zhu, "Automated selecting subset of channels based on CSP in motor imagery brain-computer system," in Proc. 2009 IEEE Int. Conf. Robot. Bioinformat., Guilin, China, Dec. 19-23, 2009, pp. 2290-2294.
-
(2009)
Proc. 2009 IEEE Int. Conf. Robot. Bioinformat.
, pp. 2290-2294
-
-
Meng, J.1
Liu, G.2
Huang, G.3
Zhu, X.4
-
10
-
-
33947085688
-
Application of correlation analysis for signal-to-noise enhancement in flame spectrometry: Use of correlation in determination of rhodium by atomic fluorescence
-
G. M. Hieftje, R. I. Bystroff, and R. Lim, "Application of correlation analysis for signal-to-noise enhancement in flame spectrometry: Use of correlation in determination of rhodium by atomic fluorescence," Analytical Chem., vol. 45, no. 2, pp. 253-258, 1973.
-
(1973)
Analytical Chem.
, vol.45
, Issue.2
, pp. 253-258
-
-
Hieftje, G.M.1
Bystroff, R.I.2
Lim, R.3
-
11
-
-
67649105233
-
An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification
-
S. Dutta, A. Chatterjee, and S. Munshi, "An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification," Expert Syst., vol. 26, no. 2, pp. 202-217, 2009.
-
(2009)
Expert Syst.
, vol.26
, Issue.2
, pp. 202-217
-
-
Dutta, S.1
Chatterjee, A.2
Munshi, S.3
-
12
-
-
67349154400
-
Modelling of a new solar air heater through least-squares support vector machines
-
H. Esen, F. Ozgen,M. Esen, and A. Sengur, "Modelling of a new solar air heater through least-squares support vector machines," Expert Syst. Appl., vol. 36, pp. 10673-10682, 2009.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 10673-10682
-
-
Esen, H.1
Ozgen, F.2
Sengur, A.3
-
13
-
-
80055040385
-
Clustering technique-based least square support vector machine for eeg signal classification
-
Siuly, Y. Li, and P. Wen, "Clustering technique-based least square support vector machine for EEG signal classification," Comput. Methods Programs Biomed., vol. 104, pp. 358-372, 2011.
-
(2011)
Comput. Methods Programs Biomed.
, vol.104
, pp. 358-372
-
-
Li, S.Y.1
Wen, P.2
-
14
-
-
51449117622
-
Sparse spatial filter optimization for eeg channel reduction in brain-computer interface
-
X. Yong, R. K. Ward, and G. E. Birch, "Sparse spatial filter optimization for EEG channel reduction in brain-computer interface," in Proc. ICASSP 2008, pp. 417-420.
-
Proc. ICASSP 2008
, pp. 417-420
-
-
Yong, X.1
Ward, R.K.2
Birch, G.E.3
-
15
-
-
77950996777
-
Regularized common spatial patterns with generic learning for eeg signal classification
-
H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Regularized common spatial patterns with generic learning for EEG signal classification," in Proc. IEEE 31st Annu. Int. Conf. EMBS, Sep. 2-6, 2009, pp. 6599-6602.
-
(2009)
Proc. IEEE 31st Annu. Int. Conf. EMBS, Sep. 26
, pp. 6599-6602
-
-
Lu, H.1
Plataniotis, K.N.2
Venetsanopoulos, A.N.3
-
16
-
-
79551538302
-
Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms
-
Feb
-
F. Lotte and C. Guan, "Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms," IEEE Trans. Biomed. Eng., vol. 58, no. 2, pp. 355-362, Feb. 2011.
-
(2011)
IEEE Trans. Biomed. Eng.
, vol.58
, Issue.2
, pp. 355-362
-
-
Lotte, F.1
Guan, C.2
-
17
-
-
78649234118
-
Regularized common spatial patterns with aggregation for eeg classification in small-sample setting
-
Dec
-
H. Lu, H. L. Eng, C. Guan, K. N. Plataniotis, and A. N. Venetsanopoulos, "Regularized common spatial patterns with aggregation for EEG classification in small-sample setting," IEEE Trans. Biomed. Eng., vol. 57, no. 12, pp. 2936-2945, Dec. 2010.
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, Issue.12
, pp. 2936-2945
-
-
Lu, H.1
Eng, H.L.2
Guan, C.3
Plataniotis, K.N.4
Venetsanopoulos, A.N.5
-
18
-
-
84863742148
-
-
BCI Competition III [Online]. Available:
-
BCI Competition III [Online]. Available: http://www.bbci.de/competition/ iii
-
-
-
-
19
-
-
33746411637
-
The BCI competition III: Validating alternative approaches to actual BCI problems
-
DOI 10.1109/TNSRE.2006.875642, 1642757
-
B. Blankertz, K. R. Muller, D. J. Krusierski, G. Schalk, J. R. Wolpaw, A. Schlgl, G. Pfurtscheller, and N. Birbaumer, "The BCI competition III: Validating alternative approaches to actual BCI problems," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 153-159, Jun. 2006. (Pubitemid 44150230)
-
(2006)
IEEE Transactions on Neural Systems and Rehabilitation Engineering
, vol.14
, Issue.2
, pp. 153-159
-
-
Blankertz, B.1
Muller, K.-R.2
Krusienski, D.J.3
Schalk, G.4
Wolpaw, J.R.5
Schlogl, A.6
Pfurtscheller, G.7
Millan, J.D.R.8
Schroder, M.9
Birbaumer, N.10
-
20
-
-
78449259555
-
Correlation techniques and least square support vector machine combine for frequency domain based ecg beat classification
-
Dec
-
S. Dutta, A. Chatterjee, and S. Munshi, "Correlation techniques and least square support vector machine combine for frequency domain based ECG beat classification," Med. Eng. Phys., vol. 32, no. 10, pp. 1161-1169, Dec. 2010.
-
(2010)
Med. Eng. Phys.
, vol.32
, Issue.10
, pp. 1161-1169
-
-
Dutta, S.1
Chatterjee, A.2
Munshi, S.3
-
21
-
-
56349106179
-
Cross-correlation aided support vector machine classifier for classification of eeg signals
-
S. Chandaka, A. Chatterjee, and S. Munshi, "Cross-correlation aided support vector machine classifier for classification of EEG signals," Expert Syst. Appl., vol. 36, pp. 1329-1336, 2009.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 1329-1336
-
-
Chandaka, S.1
Chatterjee, A.2
Munshi, S.3
-
22
-
-
33749042323
-
Cross-correlation as a method for comparing dynamic electromyography signals during gait
-
DOI 10.1016/j.jbiomech.2005.09.006, PII S0021929005004124
-
T. A. L. Wren, K. P. Do, S. A. Rethlefsen, and B. Healy, "Cross-correlation as a method for comparing dynamic electromyography signals during gait," J. Biomechan., vol. 39, pp. 2714-2718, 2006. (Pubitemid 44465928)
-
(2006)
Journal of Biomechanics
, vol.39
, Issue.14
, pp. 2714-2718
-
-
Wren, T.A.L.1
Patrick Do, K.2
Rethlefsen, S.A.3
Healy, B.4
-
24
-
-
34547779978
-
-
3rd ed. Boston, MA: Addison Wesley Pearson
-
R. D. De Veaux, P. F. Velleman, and D. E. Bock, Intro Stats, 3rd ed. Boston, MA: Pearson Addison Wesley, 2008.
-
(2008)
Intro Stats
-
-
De Veaux, R.D.1
Velleman, P.F.2
Bock, D.E.3
-
25
-
-
3042551400
-
Multivariate calibration with least-squares support vector machines
-
DOI 10.1021/ac035522m
-
U. Thissen, B. Ustun, W. J. Melssen, and L. M. C. Buydens, "Multivariate calibration with least-square support vector machines," Analytical Chem., vol. 76, pp. 3099-3105, 2004. (Pubitemid 38715701)
-
(2004)
Analytical Chemistry
, vol.76
, Issue.11
, pp. 3099-3105
-
-
Thissen, U.1
Ustun, B.2
Melsseit, W.J.3
Buydens, L.M.C.4
-
26
-
-
69049087866
-
Classification of eeg signals using sampling techniques and least square support vector machines
-
Berlin,Germany: Springer LectureNotes Computer Science
-
S. Siuly, Y. Li, and P. Wen, "Classification of EEG signals using sampling techniques and least square support vector machines," in RSKT 2009. Berlin,Germany: Springer, vol. 5589, LectureNotes Computer Science, pp. 375-382.
-
RSKT 2009
, vol.5589
, pp. 375-382
-
-
Siuly, S.1
Li, Y.2
Wen, P.3
-
27
-
-
0037695279
-
-
Singapore: World Scientific
-
J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle, Least Square Support Vector Machine. Singapore: World Scientific, 2002.
-
(2002)
Least Square Support Vector Machine
-
-
Suykens, J.A.K.1
Gestel, T.V.2
Brabanter, J.D.3
Moor, B.D.4
Suykens, J.A.K.5
Gestel, T.V.6
Brabanter, J.D.7
Moor, B.D.8
Vandewalle, J.9
-
29
-
-
77949658813
-
Application of relevance vector machine and logistic regression for machine degradation assessment
-
W. Caesarendra, A. Widodo, and B. S. Yang, "Application of relevance vector machine and logistic regression for machine degradation assessment," Mechan. Syst. Signal Process., vol. 24, pp. 1161-1171, 2010.
-
(2010)
Mechan. Syst. Signal Process.
, vol.24
, pp. 1161-1171
-
-
Caesarendra, W.1
Widodo, A.2
Yang, B.S.3
-
31
-
-
17744374301
-
Classification of EEG signals using neural network and logistic regression
-
DOI 10.1016/j.cmpb.2004.10.009
-
A. Subasi and E. Ercelebi, "Classification of EEG signals using neural network and logistic regression," Comput. Methods Programs Biomed., vol. 78, pp. 87-99, 2005. (Pubitemid 40575687)
-
(2005)
Computer Methods and Programs in Biomedicine
, vol.78
, Issue.2
, pp. 87-99
-
-
Subasi, A.1
Ercelebi, E.2
-
32
-
-
24344510343
-
Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing
-
DOI 10.1016/j.neunet.2005.01.006, PII S0893608005000444
-
A. Subasi, A. Alkan, E. Koklukaya, andM. K. Kiymik, "Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing," Neural Netw., vol. 18, pp. 985-997, 2005. (Pubitemid 41253513)
-
(2005)
Neural Networks
, vol.18
, Issue.7
, pp. 985-997
-
-
Subasi, A.1
Alkan, A.2
Koklukaya, E.3
Kiymik, M.K.4
-
33
-
-
84860259505
-
Eeg signal classification based on simple random sampling technique with least square support vector machines
-
to be published
-
Siuly, Y. Li, and P. Wen, "EEG signal classification based on simple random sampling technique with least square support vector machines," Int. J. Biomed. Eng. Technol., 2011, to be published.
-
Int. J. Biomed. Eng. Technol.
, vol.2011
-
-
Li, S.Y.1
Wen, P.2
-
34
-
-
58349104329
-
Multiclass least-square support vector machines for analog modulation classification
-
S. Abdulkadir, "Multiclass least-square support vector machines for analog modulation classification," Expert Syst. Appl., vol. 36, pp. 6681-6685, 2009.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 6681-6685
-
-
Abdulkadir, S.1
-
35
-
-
77951976541
-
Sparse logistic regression for whole-brain classification of fmri data
-
S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, "Sparse logistic regression for whole-brain classification of fMRI data," NeuroImage, vol. 51, pp. 752-764, 2010.
-
(2010)
NeuroImage
, vol.51
, pp. 752-764
-
-
Ryali, S.1
Supekar, K.2
Abrams, D.A.3
Menon, V.4
-
36
-
-
84863742152
-
-
LS-SVMlab Toolbox (Version 1.5) [Online]. Available:
-
LS-SVMlab Toolbox (Version 1.5) [Online]. Available: http://www.esat. kuleuven.ac.be/sista/lssvmlab
-
-
-
-
37
-
-
0032638628
-
Least square support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle, "Least square support vector machine classifiers," Neural Process. Lett., vol. 9, pp. 293-300, 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
38
-
-
67349136419
-
Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-square support vector machines and other chemometrics
-
L. Xie, Y. Ying, and T. Ying, "Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-square support vector machines and other chemometrics," J. Food Eng., vol. 94, pp. 34-39, 2009.
-
(2009)
J. Food Eng.
, vol.94
, pp. 34-39
-
-
Xie, L.1
Ying, Y.2
Ying, T.3
-
39
-
-
55249096719
-
Least square support vector machine analysis for the classification of paddy seeds by harvest year
-
X. L. Li, Y. He, and C. Q. Wu, "Least square support vector machine analysis for the classification of paddy seeds by harvest year," Proc. ASABE, vol. 51, no. 5, pp. 1793-1799, 2008.
-
(2008)
Proc. ASABE
, vol.51
, Issue.5
, pp. 1793-1799
-
-
Li, X.L.1
He, Y.2
Wu, C.Q.3
-
40
-
-
43049121679
-
Efficient approximate leave-one-out cross-validation for kernel logistic regression
-
G. C. Cawley andN. L. C. Talbot, "Efficient approximate leave-one-out cross-validation for kernel logistic regression," Mach. Learn., vol. 71, pp. 243-264, 2008.
-
(2008)
Mach. Learn.
, vol.71
, pp. 243-264
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
41
-
-
84863751369
-
Kernel logistic regression-linear for leukemia classification using high dimensional data
-
S. P. Rahayu, S. W. Purnami, A. Embong, and J. M. Zain, "Kernel logistic regression-linear for leukemia classification using high dimensional data," JUTI, vol. 7, no. 3, pp. 145-150, 2009.
-
(2009)
JUTI
, vol.7
, Issue.3
, pp. 145-150
-
-
Rahayu, S.P.1
Purnami, S.W.2
Embong, A.3
Zain, J.M.4
-
42
-
-
84863751645
-
-
MATLABArsenal [Online]. Available:
-
MATLABArsenal [Online]. Available: http://www.informedia.cs.cmu. edu/yanrong/MATLABArsenal/MATLABArsenal.zip
-
-
-
|