메뉴 건너뛰기




Volumn 20, Issue 4, 2012, Pages 526-538

Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface

Author keywords

Brain computer interface (BCI); cross correlation technique; electroencephalogram (EEG); feature extraction; kernel logistic regression; least square support vector machine (LS SVM); logistic regression; motor imagery (MI)

Indexed keywords

BRAIN-COMPUTER INTERFACES (BCI); CROSS CORRELATION TECHNIQUES; KERNEL LOGISTIC REGRESSION; LEAST SQUARE SUPPORT VECTOR MACHINES; LOGISTIC REGRESSIONS; MOTOR IMAGERY;

EID: 84863763866     PISSN: 15344320     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNSRE.2012.2184838     Document Type: Article
Times cited : (170)

References (42)
  • 1
    • 52149089721 scopus 로고    scopus 로고
    • Brain-computer interfaces based on visual evoked potentials
    • Sep.-Oct
    • B. Y. Wang, X. Gao, B. Hong, C. Jia, and S. Gao, "Brain-computer interfaces based on visual evoked potentials," IEEE Eng. Med. Biol. Mag., vol. 27, no. 5, pp. 64-71, Sep.-Oct. 2008.
    • (2008) IEEE Eng. Med. Biol. Mag. , vol.27 , Issue.5 , pp. 64-71
    • Wang, B.Y.1    Gao, X.2    Hong, B.3    Jia, C.4    Gao, S.5
  • 2
    • 79955412608 scopus 로고    scopus 로고
    • Brain-computer interfaces for communication and control
    • D. J. McFarland and J. R. Wolpaw, "Brain-computer interfaces for communication and control," Commun. ACM, vol. 54, no. 5, pp. 60-66, 2011.
    • (2011) Commun. ACM , vol.54 , Issue.5 , pp. 60-66
    • McFarland, D.J.1    Wolpaw, J.R.2
  • 3
    • 33646561586 scopus 로고    scopus 로고
    • Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
    • DOI 10.1016/j.neuroimage.2005.12.003, PII S1053811905025140
    • G. Pfurtscheller, C. Brunner, A. Schlogl, and F. Lopes da Silva, "Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks," Neuroimage, vol. 31, no. 1, pp. 153-159, 2006. (Pubitemid 43729000)
    • (2006) NeuroImage , vol.31 , Issue.1 , pp. 153-159
    • Pfurtscheller, G.1    Brunner, C.2    Schlogl, A.3    Lopes Da Silva, F.H.4
  • 4
    • 77953131563 scopus 로고    scopus 로고
    • A polynomial fitting and k-nn based approach for improving classification ofmotor imagery bci data
    • T. Kayikcioglu and O. Aydemir, "A polynomial fitting and k-NN based approach for improving classification ofmotor imagery BCI data," Pattern Recognit. Lett., vol. 31, pp. 1207-1215, 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 1207-1215
    • Kayikcioglu, T.1    Aydemir, O.2
  • 6
    • 67349201202 scopus 로고    scopus 로고
    • Beamforming in noninvasive brain-computer interfaces
    • Apr
    • M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, "Beamforming in noninvasive brain-computer interfaces," IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1209-1219, Apr. 2009.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , Issue.4 , pp. 1209-1219
    • Grosse-Wentrup, M.1    Liefhold, C.2    Gramann, K.3    Buss, M.4
  • 7
    • 44349107795 scopus 로고    scopus 로고
    • Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)
    • DOI 10.1109/TBME.2008.919125, 14
    • W. Wu, X. Gao, B. Hong, and S. Gao, "Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)," IEEE Trans. Biomed. Eng., vol. 55, no. 6, pp. 1733-1743, Jun. 2008. (Pubitemid 351728022)
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , Issue.6 , pp. 1733-1743
    • Wu, W.1    Gao, X.2    Hong, B.3    Gao, S.4
  • 8
    • 77956058249 scopus 로고    scopus 로고
    • A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces
    • J. Long, Y. Li, and Z. Yu, "A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces," Cognitive Neurodynamics, vol. 4, pp. 207-216, 2010.
    • (2010) Cognitive Neurodynamics , vol.4 , pp. 207-216
    • Long, J.1    Li, Y.2    Yu, Z.3
  • 9
    • 77951450909 scopus 로고    scopus 로고
    • Automated selecting subset of channels based on csp in motor imagery brain-computer system
    • Guilin, China, Dec. 19-23
    • J. Meng, G. Liu, G. Huang, and X. Zhu, "Automated selecting subset of channels based on CSP in motor imagery brain-computer system," in Proc. 2009 IEEE Int. Conf. Robot. Bioinformat., Guilin, China, Dec. 19-23, 2009, pp. 2290-2294.
    • (2009) Proc. 2009 IEEE Int. Conf. Robot. Bioinformat. , pp. 2290-2294
    • Meng, J.1    Liu, G.2    Huang, G.3    Zhu, X.4
  • 10
    • 33947085688 scopus 로고
    • Application of correlation analysis for signal-to-noise enhancement in flame spectrometry: Use of correlation in determination of rhodium by atomic fluorescence
    • G. M. Hieftje, R. I. Bystroff, and R. Lim, "Application of correlation analysis for signal-to-noise enhancement in flame spectrometry: Use of correlation in determination of rhodium by atomic fluorescence," Analytical Chem., vol. 45, no. 2, pp. 253-258, 1973.
    • (1973) Analytical Chem. , vol.45 , Issue.2 , pp. 253-258
    • Hieftje, G.M.1    Bystroff, R.I.2    Lim, R.3
  • 11
    • 67649105233 scopus 로고    scopus 로고
    • An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification
    • S. Dutta, A. Chatterjee, and S. Munshi, "An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification," Expert Syst., vol. 26, no. 2, pp. 202-217, 2009.
    • (2009) Expert Syst. , vol.26 , Issue.2 , pp. 202-217
    • Dutta, S.1    Chatterjee, A.2    Munshi, S.3
  • 12
    • 67349154400 scopus 로고    scopus 로고
    • Modelling of a new solar air heater through least-squares support vector machines
    • H. Esen, F. Ozgen,M. Esen, and A. Sengur, "Modelling of a new solar air heater through least-squares support vector machines," Expert Syst. Appl., vol. 36, pp. 10673-10682, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10673-10682
    • Esen, H.1    Ozgen, F.2    Sengur, A.3
  • 13
    • 80055040385 scopus 로고    scopus 로고
    • Clustering technique-based least square support vector machine for eeg signal classification
    • Siuly, Y. Li, and P. Wen, "Clustering technique-based least square support vector machine for EEG signal classification," Comput. Methods Programs Biomed., vol. 104, pp. 358-372, 2011.
    • (2011) Comput. Methods Programs Biomed. , vol.104 , pp. 358-372
    • Li, S.Y.1    Wen, P.2
  • 14
    • 51449117622 scopus 로고    scopus 로고
    • Sparse spatial filter optimization for eeg channel reduction in brain-computer interface
    • X. Yong, R. K. Ward, and G. E. Birch, "Sparse spatial filter optimization for EEG channel reduction in brain-computer interface," in Proc. ICASSP 2008, pp. 417-420.
    • Proc. ICASSP 2008 , pp. 417-420
    • Yong, X.1    Ward, R.K.2    Birch, G.E.3
  • 16
    • 79551538302 scopus 로고    scopus 로고
    • Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms
    • Feb
    • F. Lotte and C. Guan, "Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms," IEEE Trans. Biomed. Eng., vol. 58, no. 2, pp. 355-362, Feb. 2011.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , Issue.2 , pp. 355-362
    • Lotte, F.1    Guan, C.2
  • 17
    • 78649234118 scopus 로고    scopus 로고
    • Regularized common spatial patterns with aggregation for eeg classification in small-sample setting
    • Dec
    • H. Lu, H. L. Eng, C. Guan, K. N. Plataniotis, and A. N. Venetsanopoulos, "Regularized common spatial patterns with aggregation for EEG classification in small-sample setting," IEEE Trans. Biomed. Eng., vol. 57, no. 12, pp. 2936-2945, Dec. 2010.
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.12 , pp. 2936-2945
    • Lu, H.1    Eng, H.L.2    Guan, C.3    Plataniotis, K.N.4    Venetsanopoulos, A.N.5
  • 18
    • 84863742148 scopus 로고    scopus 로고
    • BCI Competition III [Online]. Available:
    • BCI Competition III [Online]. Available: http://www.bbci.de/competition/ iii
  • 20
    • 78449259555 scopus 로고    scopus 로고
    • Correlation techniques and least square support vector machine combine for frequency domain based ecg beat classification
    • Dec
    • S. Dutta, A. Chatterjee, and S. Munshi, "Correlation techniques and least square support vector machine combine for frequency domain based ECG beat classification," Med. Eng. Phys., vol. 32, no. 10, pp. 1161-1169, Dec. 2010.
    • (2010) Med. Eng. Phys. , vol.32 , Issue.10 , pp. 1161-1169
    • Dutta, S.1    Chatterjee, A.2    Munshi, S.3
  • 21
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of eeg signals
    • S. Chandaka, A. Chatterjee, and S. Munshi, "Cross-correlation aided support vector machine classifier for classification of EEG signals," Expert Syst. Appl., vol. 36, pp. 1329-1336, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 22
    • 33749042323 scopus 로고    scopus 로고
    • Cross-correlation as a method for comparing dynamic electromyography signals during gait
    • DOI 10.1016/j.jbiomech.2005.09.006, PII S0021929005004124
    • T. A. L. Wren, K. P. Do, S. A. Rethlefsen, and B. Healy, "Cross-correlation as a method for comparing dynamic electromyography signals during gait," J. Biomechan., vol. 39, pp. 2714-2718, 2006. (Pubitemid 44465928)
    • (2006) Journal of Biomechanics , vol.39 , Issue.14 , pp. 2714-2718
    • Wren, T.A.L.1    Patrick Do, K.2    Rethlefsen, S.A.3    Healy, B.4
  • 25
    • 3042551400 scopus 로고    scopus 로고
    • Multivariate calibration with least-squares support vector machines
    • DOI 10.1021/ac035522m
    • U. Thissen, B. Ustun, W. J. Melssen, and L. M. C. Buydens, "Multivariate calibration with least-square support vector machines," Analytical Chem., vol. 76, pp. 3099-3105, 2004. (Pubitemid 38715701)
    • (2004) Analytical Chemistry , vol.76 , Issue.11 , pp. 3099-3105
    • Thissen, U.1    Ustun, B.2    Melsseit, W.J.3    Buydens, L.M.C.4
  • 26
    • 69049087866 scopus 로고    scopus 로고
    • Classification of eeg signals using sampling techniques and least square support vector machines
    • Berlin,Germany: Springer LectureNotes Computer Science
    • S. Siuly, Y. Li, and P. Wen, "Classification of EEG signals using sampling techniques and least square support vector machines," in RSKT 2009. Berlin,Germany: Springer, vol. 5589, LectureNotes Computer Science, pp. 375-382.
    • RSKT 2009 , vol.5589 , pp. 375-382
    • Siuly, S.1    Li, Y.2    Wen, P.3
  • 29
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • W. Caesarendra, A. Widodo, and B. S. Yang, "Application of relevance vector machine and logistic regression for machine degradation assessment," Mechan. Syst. Signal Process., vol. 24, pp. 1161-1171, 2010.
    • (2010) Mechan. Syst. Signal Process. , vol.24 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 31
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • DOI 10.1016/j.cmpb.2004.10.009
    • A. Subasi and E. Ercelebi, "Classification of EEG signals using neural network and logistic regression," Comput. Methods Programs Biomed., vol. 78, pp. 87-99, 2005. (Pubitemid 40575687)
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 32
    • 24344510343 scopus 로고    scopus 로고
    • Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing
    • DOI 10.1016/j.neunet.2005.01.006, PII S0893608005000444
    • A. Subasi, A. Alkan, E. Koklukaya, andM. K. Kiymik, "Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing," Neural Netw., vol. 18, pp. 985-997, 2005. (Pubitemid 41253513)
    • (2005) Neural Networks , vol.18 , Issue.7 , pp. 985-997
    • Subasi, A.1    Alkan, A.2    Koklukaya, E.3    Kiymik, M.K.4
  • 33
    • 84860259505 scopus 로고    scopus 로고
    • Eeg signal classification based on simple random sampling technique with least square support vector machines
    • to be published
    • Siuly, Y. Li, and P. Wen, "EEG signal classification based on simple random sampling technique with least square support vector machines," Int. J. Biomed. Eng. Technol., 2011, to be published.
    • Int. J. Biomed. Eng. Technol. , vol.2011
    • Li, S.Y.1    Wen, P.2
  • 34
    • 58349104329 scopus 로고    scopus 로고
    • Multiclass least-square support vector machines for analog modulation classification
    • S. Abdulkadir, "Multiclass least-square support vector machines for analog modulation classification," Expert Syst. Appl., vol. 36, pp. 6681-6685, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 6681-6685
    • Abdulkadir, S.1
  • 35
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of fmri data
    • S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, "Sparse logistic regression for whole-brain classification of fMRI data," NeuroImage, vol. 51, pp. 752-764, 2010.
    • (2010) NeuroImage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 36
    • 84863742152 scopus 로고    scopus 로고
    • LS-SVMlab Toolbox (Version 1.5) [Online]. Available:
    • LS-SVMlab Toolbox (Version 1.5) [Online]. Available: http://www.esat. kuleuven.ac.be/sista/lssvmlab
  • 37
    • 0032638628 scopus 로고    scopus 로고
    • Least square support vector machine classifiers
    • J. A. K. Suykens and J. Vandewalle, "Least square support vector machine classifiers," Neural Process. Lett., vol. 9, pp. 293-300, 1999.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 38
    • 67349136419 scopus 로고    scopus 로고
    • Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-square support vector machines and other chemometrics
    • L. Xie, Y. Ying, and T. Ying, "Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-square support vector machines and other chemometrics," J. Food Eng., vol. 94, pp. 34-39, 2009.
    • (2009) J. Food Eng. , vol.94 , pp. 34-39
    • Xie, L.1    Ying, Y.2    Ying, T.3
  • 39
    • 55249096719 scopus 로고    scopus 로고
    • Least square support vector machine analysis for the classification of paddy seeds by harvest year
    • X. L. Li, Y. He, and C. Q. Wu, "Least square support vector machine analysis for the classification of paddy seeds by harvest year," Proc. ASABE, vol. 51, no. 5, pp. 1793-1799, 2008.
    • (2008) Proc. ASABE , vol.51 , Issue.5 , pp. 1793-1799
    • Li, X.L.1    He, Y.2    Wu, C.Q.3
  • 40
    • 43049121679 scopus 로고    scopus 로고
    • Efficient approximate leave-one-out cross-validation for kernel logistic regression
    • G. C. Cawley andN. L. C. Talbot, "Efficient approximate leave-one-out cross-validation for kernel logistic regression," Mach. Learn., vol. 71, pp. 243-264, 2008.
    • (2008) Mach. Learn. , vol.71 , pp. 243-264
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 41
    • 84863751369 scopus 로고    scopus 로고
    • Kernel logistic regression-linear for leukemia classification using high dimensional data
    • S. P. Rahayu, S. W. Purnami, A. Embong, and J. M. Zain, "Kernel logistic regression-linear for leukemia classification using high dimensional data," JUTI, vol. 7, no. 3, pp. 145-150, 2009.
    • (2009) JUTI , vol.7 , Issue.3 , pp. 145-150
    • Rahayu, S.P.1    Purnami, S.W.2    Embong, A.3    Zain, J.M.4
  • 42
    • 84863751645 scopus 로고    scopus 로고
    • MATLABArsenal [Online]. Available:
    • MATLABArsenal [Online]. Available: http://www.informedia.cs.cmu. edu/yanrong/MATLABArsenal/MATLABArsenal.zip


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.