메뉴 건너뛰기




Volumn 14, Issue 7, 2009, Pages 2870-2885

Applications of information theory, genetic algorithms, and neural models to predict oil flow

Author keywords

Genetic algorithm; Information theory; Neural networks; Non linear modeling

Indexed keywords

ENTROPY; FORECASTING; INFORMATION THEORY; LINEAR CONTROL SYSTEMS; NEURAL NETWORKS;

EID: 59849122121     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2008.12.011     Document Type: Review
Times cited : (55)

References (14)
  • 1
    • 33847342949 scopus 로고    scopus 로고
    • High-dimensional delay selection for regression models with mutual information and distance-to-diagonal criteria
    • Simon G., and Verleysen M. High-dimensional delay selection for regression models with mutual information and distance-to-diagonal criteria. Neurocomputing 70 7-9 (2007) 1265-1275
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1265-1275
    • Simon, G.1    Verleysen, M.2
  • 2
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., and Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70 7-9 (2007) 1276-1288
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 3
    • 85196188169 scopus 로고    scopus 로고
    • Yang H, Moody J. Feature selection based on joint mutual information. In: Advances in Intelligent Data Analysis (AIDA). Computational intelligence methods and applications (CIMA), international computer science conventions, Rochester, New York; 1999.
    • Yang H, Moody J. Feature selection based on joint mutual information. In: Advances in Intelligent Data Analysis (AIDA). Computational intelligence methods and applications (CIMA), international computer science conventions, Rochester, New York; 1999.
  • 4
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola K. Feature extraction by non-parametric mutual information maximization. J Mach Learn Res 3 (2003) 1415-1438
    • (2003) J Mach Learn Res , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 9
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Machine Intell (2005) 1226-1238
    • (2005) IEEE Trans Pattern Anal Machine Intell , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 10
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modeling and identification
    • Chen S., and Billings S. Neural networks for nonlinear dynamic system modeling and identification. Int J Control 56 2 (1992) 319-346
    • (1992) Int J Control , vol.56 , Issue.2 , pp. 319-346
    • Chen, S.1    Billings, S.2
  • 11
    • 34047100795 scopus 로고    scopus 로고
    • Neural networks analysis of free laminar convection heat transfer in a partitioned enclosure
    • Mahmouda M.A., and Ben-Nakhi A.E. Neural networks analysis of free laminar convection heat transfer in a partitioned enclosure. Commun Nonlinear Sci Numer Simulat 12 7 (2007) 1265-1276
    • (2007) Commun Nonlinear Sci Numer Simulat , vol.12 , Issue.7 , pp. 1265-1276
    • Mahmouda, M.A.1    Ben-Nakhi, A.E.2
  • 12
    • 0025627940 scopus 로고    scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik K., Stinchcombe M., and White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks (1999) 551-560
    • (1999) Neural Networks , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 33845669541 scopus 로고    scopus 로고
    • Real optimal parameter estimation for Muskingum model based on gray-encoded accelerating genetic algorithm
    • Chen J., and Yang X. Real optimal parameter estimation for Muskingum model based on gray-encoded accelerating genetic algorithm. Commun Nonlinear Sci Numer Simulat 12 (2007) 849-858
    • (2007) Commun Nonlinear Sci Numer Simulat , vol.12 , pp. 849-858
    • Chen, J.1    Yang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.