메뉴 건너뛰기




Volumn 89, Issue , 2012, Pages 142-146

Prediction of the effects of preparation conditions on pervaporation performances of polydimethylsiloxane(PDMS)/ceramic composite membranes by backpropagation neural network and genetic algorithm

Author keywords

Backpropagation; Genetic algorithm; Neural network; Pervaporation; Preparation condition

Indexed keywords

BACK-PROPAGATION NEURAL NETWORKS; CONNECTION WEIGHTS; CROSS LINKING AGENTS; DIP COATING; HYBRID MODEL; MEMBRANE FLUXES; MEMBRANE PERFORMANCE; NON-LINEAR RELATIONSHIPS; PERVAPORATION MEMBRANES; POLYDIMETHYLSILOXANE PDMS; PREPARATION CONDITIONS; PREPARATION PROCESS; RESPONSE SURFACE METHODOLOGY; STANDARD DEVIATION; TRIAL-AND-ERROR METHOD;

EID: 84862793907     PISSN: 13835866     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.seppur.2012.01.011     Document Type: Article
Times cited : (38)

References (39)
  • 1
    • 2942525387 scopus 로고    scopus 로고
    • Preparation of multi-layer silicone/PVDF composite membranes for pervaporation of ethanol aqueous solutions
    • C.-L. Chang, and M.-S. Chang Preparation of multi-layer silicone/PVDF composite membranes for pervaporation of ethanol aqueous solutions J. Membr. Sci. 238 2004 117 122
    • (2004) J. Membr. Sci. , vol.238 , pp. 117-122
    • Chang, C.-L.1    Chang, M.-S.2
  • 2
    • 70049096021 scopus 로고    scopus 로고
    • PDMS-silica composite membranes with silane coupling for propylene separation
    • H. Kim, H.-G. Kim, S. Kim, and S.S. Kim PDMS-silica composite membranes with silane coupling for propylene separation J. Membr. Sci. 344 2009 211 218
    • (2009) J. Membr. Sci. , vol.344 , pp. 211-218
    • Kim, H.1    Kim, H.-G.2    Kim, S.3    Kim, S.S.4
  • 4
    • 39149103402 scopus 로고    scopus 로고
    • Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology
    • F. Xiangli, W. Wei, Y. Chen, W. Jin, and N. Xu Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology J. Membr. Sci. 311 2008 23 33
    • (2008) J. Membr. Sci. , vol.311 , pp. 23-33
    • Xiangli, F.1    Wei, W.2    Chen, Y.3    Jin, W.4    Xu, N.5
  • 5
    • 74849112032 scopus 로고    scopus 로고
    • Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes
    • S. Yi, Y. Su, B. Qi, Z. Su, and Y. Wan Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes Sep. Purif. Technol. 71 2010 252 262
    • (2010) Sep. Purif. Technol. , vol.71 , pp. 252-262
    • Yi, S.1    Su, Y.2    Qi, B.3    Su, Z.4    Wan, Y.5
  • 8
    • 11244271394 scopus 로고    scopus 로고
    • Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology
    • A.F. Ismail, and P.Y. Lai Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology Sep. Purif. Technol. 40 2004 191 207
    • (2004) Sep. Purif. Technol. , vol.40 , pp. 191-207
    • Ismail, A.F.1    Lai, P.Y.2
  • 9
    • 33646091314 scopus 로고    scopus 로고
    • Application of response surface methodology in describing the performance of thin film composite membrane
    • A. Idris, F. Kormin, and M.Y. Noordin Application of response surface methodology in describing the performance of thin film composite membrane Sep. Purif. Technol. 49 2006 271 280
    • (2006) Sep. Purif. Technol. , vol.49 , pp. 271-280
    • Idris, A.1    Kormin, F.2    Noordin, M.Y.3
  • 11
    • 44849141066 scopus 로고    scopus 로고
    • Artificial neural network simulation of combined humic substance coagulation and membrane filtration
    • M. Al-Abri, and N. Hilal Artificial neural network simulation of combined humic substance coagulation and membrane filtration Chem. Eng. J. 141 2008 27 34
    • (2008) Chem. Eng. J. , vol.141 , pp. 27-34
    • Al-Abri, M.1    Hilal, N.2
  • 12
    • 33846786458 scopus 로고    scopus 로고
    • Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: Neural network and Spiegler-Kedem model
    • H. Al-Zoubi, N. Hilal, N.A. Darwish, and A.W. Mohammad Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model Desalination 206 2007 42 60
    • (2007) Desalination , vol.206 , pp. 42-60
    • Al-Zoubi, H.1    Hilal, N.2    Darwish, N.A.3    Mohammad, A.W.4
  • 13
    • 0037908836 scopus 로고    scopus 로고
    • Neural network approach to support modelling of chemical reactors: Problems, resolutions, criteria of application
    • E.J. Molga Neural network approach to support modelling of chemical reactors: problems, resolutions, criteria of application Chem. Eng. Process. 42 2003 675 695
    • (2003) Chem. Eng. Process. , vol.42 , pp. 675-695
    • Molga, E.J.1
  • 15
    • 77349122829 scopus 로고    scopus 로고
    • Prediction of microfiltration membrane fouling using artificial neural network models
    • Q.-F. Liu, S.-H. Kim, and S. Lee Prediction of microfiltration membrane fouling using artificial neural network models Sep. Purif. Technol. 70 2009 96 102
    • (2009) Sep. Purif. Technol. , vol.70 , pp. 96-102
    • Liu, Q.-F.1    Kim, S.-H.2    Lee, S.3
  • 16
    • 0038054285 scopus 로고    scopus 로고
    • Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks
    • G.R. Shetty, and S. Chellam Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks J. Membr. Sci. 217 2003 69 86
    • (2003) J. Membr. Sci. , vol.217 , pp. 69-86
    • Shetty, G.R.1    Chellam, S.2
  • 17
    • 20444445001 scopus 로고    scopus 로고
    • Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions
    • S. Chellam Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions J. Membr. Sci. 258 2005 35 42
    • (2005) J. Membr. Sci. , vol.258 , pp. 35-42
    • Chellam, S.1
  • 18
    • 60549093196 scopus 로고    scopus 로고
    • Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration - A neural network approach
    • B. Sarkar, A. Sengupta, S. De, and S. DasGupta Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration - a neural network approach Sep. Purif. Technol. 65 2009 260 268
    • (2009) Sep. Purif. Technol. , vol.65 , pp. 260-268
    • Sarkar, B.1    Sengupta, A.2    De, S.3    Dasgupta, S.4
  • 19
    • 0034316975 scopus 로고    scopus 로고
    • Comparative evaluation of genetic algorithm and backpropagation for training neural networks
    • R.S. Sexton, and J.N.D. Gupta Comparative evaluation of genetic algorithm and backpropagation for training neural networks Inform. Sciences 129 2000 45 59
    • (2000) Inform. Sciences , vol.129 , pp. 45-59
    • Sexton, R.S.1    Gupta, J.N.D.2
  • 21
    • 34748839656 scopus 로고    scopus 로고
    • Neural network model for a commercial PEM fuel cell system
    • A. Saengrung, A. Abtahi, and A. Zilouchian Neural network model for a commercial PEM fuel cell system J. Power Sources 172 2007 749 759
    • (2007) J. Power Sources , vol.172 , pp. 749-759
    • Saengrung, A.1    Abtahi, A.2    Zilouchian, A.3
  • 22
    • 0003593041 scopus 로고    scopus 로고
    • PWS publishing company, a division of Thomson learning Boston, USA
    • M.T. Hagan, H.B. Demuth, and M. Beale Neural Network Design 1996 PWS publishing company, a division of Thomson learning Boston, USA
    • (1996) Neural Network Design
    • Hagan, M.T.1    Demuth, H.B.2    Beale, M.3
  • 23
    • 1342344621 scopus 로고    scopus 로고
    • Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission
    • U. Kesgin Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission Fuel 83 2004 885 895
    • (2004) Fuel , vol.83 , pp. 885-895
    • Kesgin, U.1
  • 24
    • 78149280764 scopus 로고    scopus 로고
    • Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm
    • S.S. Madaeni, N.T. Hasankiadeh, A.R. Kurdian, and A. Rahimpour Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm Sep. Purif. Technol. 76 2010 33 43
    • (2010) Sep. Purif. Technol. , vol.76 , pp. 33-43
    • Madaeni, S.S.1    Hasankiadeh, N.T.2    Kurdian, A.R.3    Rahimpour, A.4
  • 25
    • 35248831125 scopus 로고    scopus 로고
    • Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm
    • Y. Mu, and H.-Q. Yu Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm Int. J. Hydrogen Energy 32 2007 3308 3314
    • (2007) Int. J. Hydrogen Energy , vol.32 , pp. 3308-3314
    • Mu, Y.1    Yu, H.-Q.2
  • 26
    • 34247159569 scopus 로고    scopus 로고
    • Polydimethylsiloxane (PDMS)/ceramic composite membrane with high flux for pervaporation of ethanol/water mixtures
    • F. Xiangli, Y. Chen, W. Jin, and N. Xu Polydimethylsiloxane (PDMS)/ceramic composite membrane with high flux for pervaporation of ethanol/water mixtures Ind. Eng. Chem. Res. 46 2007 2224 2230
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2224-2230
    • Xiangli, F.1    Chen, Y.2    Jin, W.3    Xu, N.4
  • 27
    • 13544274196 scopus 로고    scopus 로고
    • Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms
    • M. Torres, C. Hervas, and F. Amador Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms Comput. Oper. Res. 32 2005 2653 2670
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2653-2670
    • Torres, M.1    Hervas, C.2    Amador, F.3
  • 28
    • 12344318181 scopus 로고    scopus 로고
    • Modeling of flux decline in crossflow microfiltration using neural networks: The case of phosphate removal
    • C. Aydiner, I. Demir, and E. Yildiz Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal J. Membr. Sci. 248 2005 53 62
    • (2005) J. Membr. Sci. , vol.248 , pp. 53-62
    • Aydiner, C.1    Demir, I.2    Yildiz, E.3
  • 29
    • 33846829958 scopus 로고    scopus 로고
    • Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method
    • C. Shen, L. Wang, and Q. Li Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method J. Mater. Process. Technol. 183 2007 412 418
    • (2007) J. Mater. Process. Technol. , vol.183 , pp. 412-418
    • Shen, C.1    Wang, L.2    Li, Q.3
  • 30
    • 56349157402 scopus 로고    scopus 로고
    • Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms
    • Y.-D. Ko, P. Moon, C.E. Kim, M.-H. Ham, J.-M. Myoung, and I. Yun Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms Expert Syst. Appl. 36 2009 4061 4066
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4061-4066
    • Ko, Y.-D.1    Moon, P.2    Kim, C.E.3    Ham, M.-H.4    Myoung, J.-M.5    Yun, I.6
  • 31
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • A. Blanco, M. Delgado, and M.C. Pegalajar A real-coded genetic algorithm for training recurrent neural networks Neural networks 14 2001 93 105
    • (2001) Neural Networks , vol.14 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 32
    • 15244361720 scopus 로고    scopus 로고
    • Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network
    • R.-Q. Fu, T.-W. Xu, and Z.-X. Pan Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network J. Membr. Sci. 251 2005 137 144
    • (2005) J. Membr. Sci. , vol.251 , pp. 137-144
    • Fu, R.-Q.1    Xu, T.-W.2    Pan, Z.-X.3
  • 33
    • 0032486814 scopus 로고    scopus 로고
    • Dynamic ultrafiltration of proteins - A neural network approach
    • W.R. Bowen, M.G. Jones, and H.N.S. Yousef Dynamic ultrafiltration of proteins - a neural network approach J. Membr. Sci. 146 1998 225 235
    • (1998) J. Membr. Sci. , vol.146 , pp. 225-235
    • Bowen, W.R.1    Jones, M.G.2    Yousef, H.N.S.3
  • 34
    • 0034672848 scopus 로고    scopus 로고
    • Neural network models for ultrafiltration and backwashing
    • C. Teodosiu, O. Pastravanu, and M. Macoveanu Neural network models for ultrafiltration and backwashing Water Res. 34 2000 4371 4380
    • (2000) Water Res. , vol.34 , pp. 4371-4380
    • Teodosiu, C.1    Pastravanu, O.2    MacOveanu, M.3
  • 35
    • 33746770437 scopus 로고    scopus 로고
    • Dead-end filtration of yeast suspensions: Correlating specific resistance and flux data using artificial neural networks
    • N.M. Jenny, and G. Foley Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks J. Membr. Sci. 281 2006 325 333
    • (2006) J. Membr. Sci. , vol.281 , pp. 325-333
    • Jenny, N.M.1    Foley, G.2
  • 36
    • 77649341647 scopus 로고    scopus 로고
    • Dynamically formed inner skin hollow fiber polydimethylsiloxane/ polysulfone composite membrane for alcohol permselective pervaporation
    • J.X. Guo, G.J. Zhang, W. Wu, S.L. Ji, Z.P. Qin, and Z.Z. Liu Dynamically formed inner skin hollow fiber polydimethylsiloxane/polysulfone composite membrane for alcohol permselective pervaporation Chem. Eng. J. 158 2010 558 565
    • (2010) Chem. Eng. J. , vol.158 , pp. 558-565
    • Guo, J.X.1    Zhang, G.J.2    Wu, W.3    Ji, S.L.4    Qin, Z.P.5    Liu, Z.Z.6
  • 37
    • 0034657088 scopus 로고    scopus 로고
    • Modified alginate composite membranes for the dehydration of acetic acid
    • X.-P. Wang Modified alginate composite membranes for the dehydration of acetic acid J. Membr. Sci. 170 2000 71 79
    • (2000) J. Membr. Sci. , vol.170 , pp. 71-79
    • Wang, X.-P.1
  • 38
    • 58149203236 scopus 로고    scopus 로고
    • Composite poly(vinyl alcohol)-poly(sulfone) membranes crosslinked by trimesoyl chloride: Characterization and dehydration of ethylene glycol-water mixtures
    • M. Hyder, R. Huang, and P. Chen Composite poly(vinyl alcohol)- poly(sulfone) membranes crosslinked by trimesoyl chloride: characterization and dehydration of ethylene glycol-water mixtures J. Membr. Sci. 326 2009 363 371
    • (2009) J. Membr. Sci. , vol.326 , pp. 363-371
    • Hyder, M.1    Huang, R.2    Chen, P.3
  • 39
    • 64449085919 scopus 로고    scopus 로고
    • Pervaporation separation of ethyl thioether/heptane mixtures by polyethylene glycol membranes
    • J. Chen, J. Li, J. Chen, Y. Lin, and X. Wang Pervaporation separation of ethyl thioether/heptane mixtures by polyethylene glycol membranes Sep. Purif. Technol. 66 2009 606 612
    • (2009) Sep. Purif. Technol. , vol.66 , pp. 606-612
    • Chen, J.1    Li, J.2    Chen, J.3    Lin, Y.4    Wang, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.