메뉴 건너뛰기




Volumn 32, Issue 10, 2005, Pages 2653-2670

Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms

Author keywords

Artificial neural networks; Extended Delta Bar Delta; Gamma function; Genetic algorithms; Non linear regression; Pruning algorithms

Indexed keywords

FUNCTIONS; GENETIC ALGORITHMS; NONLINEAR SYSTEMS; PATTERN RECOGNITION; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 13544274196     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2004.06.025     Document Type: Article
Times cited : (22)

References (36)
  • 2
    • 13544250394 scopus 로고    scopus 로고
    • Predicción de índices de futuros financieros mediante redes neuronales
    • J. Bosch, and L.C. Garrido Predicción de índices de futuros financieros mediante redes neuronales Swaps & Productos Derivados 27 1997 19 21
    • (1997) Swaps & Productos Derivados , vol.27 , pp. 19-21
    • Bosch, J.1    Garrido, L.C.2
  • 3
    • 0036643154 scopus 로고    scopus 로고
    • Neural networks and non-linear statistical methods: An application to the modeling of price-quality relationships
    • B. Curry, and P. Morgan Neural networks and non-linear statistical methods an application to the modeling of price-quality relationships Computers & Operations Research 29 2002 951 969
    • (2002) Computers & Operations Research , vol.29 , pp. 951-969
    • Curry, B.1    Morgan, P.2
  • 4
    • 0034045699 scopus 로고    scopus 로고
    • Forecasting exchange rates using general regression neural networks
    • Ch. An-Sing, and M. Leesy Forecasting exchange rates using general regression neural networks Computers & Operations Research 27 2000 1093 1110
    • (2000) Computers & Operations Research , vol.27 , pp. 1093-1110
    • An-Sing, Ch.1    Leesy, M.2
  • 7
    • 0024051136 scopus 로고
    • Layered neural nets for pattern recognition
    • B. Widrow Layered neural nets for pattern recognition IEEE 36 1962 1109 1118
    • (1962) IEEE , vol.36 , pp. 1109-1118
    • Widrow, B.1
  • 9
    • 0024137490 scopus 로고
    • Increased rates of convergence trough learning rate adaptation
    • R.A. Jacobs Increased rates of convergence trough learning rate adaptation Neural Networks 1 1978 295 307
    • (1978) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 12
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko Approximation by superpositions of a sigmoidal function Control Signals Systems 2 1989 305 314
    • (1989) Control Signals Systems , vol.2 , pp. 305-314
    • Cybenko, G.1
  • 14
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multi-layer feedforward networks are universal approximators Neural networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoid function
    • A.R. Barron Universal approximation bounds for superpositions of a sigmoid function IEEE Transactions on Information Theory 39 1993 930 945
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 16
    • 0031281425 scopus 로고    scopus 로고
    • Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization
    • M. Bebis, and M. Georgipoulos Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization Neurocomputing 17 1997 167 194
    • (1997) Neurocomputing , vol.17 , pp. 167-194
    • Bebis, M.1    Georgipoulos, M.2
  • 17
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace Prior
    • P.M. Williams Bayesian regularization and pruning using a Laplace Prior Neural Computation 7 1994 117 143
    • (1994) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.M.1
  • 21
    • 0033362601 scopus 로고    scopus 로고
    • Envolving artificial neural networks
    • X. Yao Envolving artificial neural networks Proceedings of the IEEE 9 87 1999 1423 1447
    • (1999) Proceedings of the IEEE , vol.9 , Issue.87 , pp. 1423-1447
    • Yao, X.1
  • 28
    • 13544257016 scopus 로고
    • Estudio genético de los factores que influyen en la producción láctea de ganado ovino II. Factores ambientales
    • J.A. Carriedo, and F. San Primitivo Estudio genético de los factores que influyen en la producción láctea de ganado ovino II. Factores ambientales ITEA 47 1983 29 34
    • (1983) ITEA , vol.47 , pp. 29-34
    • Carriedo, J.A.1    San Primitivo, F.2
  • 30
    • 84971954002 scopus 로고
    • A new approach to the formulation of lactarion curves
    • S.V. Morant A new approach to the formulation of lactarion curves Animal Production 49 1989 151 162
    • (1989) Animal Production , vol.49 , pp. 151-162
    • Morant, S.V.1
  • 33
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D.J.C. Mackay A practical Bayesian framework for backpropagation networks Neural Computation 4 1992 448 472
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 36
    • 4244069818 scopus 로고    scopus 로고
    • Cálculo de los factores de extensión de la lactación a 120 días en ganado ovino Manchego
    • Serrano M, Montoro V. Cálculo de los factores de extensión de la lactación a 120 días en ganado ovino Manchego. Investigación agraria: producción y Sanidad Animales 1996; 11(1): 69-83.
    • (1996) Investigación Agraria: Producción Y Sanidad Animales , vol.11 , Issue.1 , pp. 69-83
    • Serrano, M.1    Montoro, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.