메뉴 건너뛰기




Volumn 2, Issue 3, 2009, Pages 973-1007

Advances in artificial neural networks - Methodological development and application

Author keywords

Artificial neural networks; Backpropagation; Neuro fuzzy; Support vector machines; Training algorithm; Wavelet

Indexed keywords


EID: 77949488653     PISSN: None     EISSN: 19994893     Source Type: Journal    
DOI: 10.3390/algor2030973     Document Type: Review
Times cited : (147)

References (140)
  • 3
    • 85132015630 scopus 로고
    • Solving the hidden node problem in networks with ellipsoidal unitsand related issues
    • Baltimore, MA, USA, June 7-11
    • Kavuri, S.N.; Venkatasubramanian, V. Solving the hidden node problem in networks with ellipsoidal unitsand related issues. In Proceedings of International Joint Conference on Neural Networks, Baltimore, MA, USA, June 7-11, 1992; Vol. I, pp. 775-780.
    • (1992) Proceedings of International Joint Conference on Neural Networks , vol.1 , pp. 775-780
    • Kavuri, S.N.1    Venkatasubramanian, V.2
  • 4
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach
    • Su, H.; McAvoy, T.J.; Werbos, P.J. Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach. Ind. Eng. Chem. Res.1992, 31, 1338-1352.
    • (1992) Ind. Eng. Chem. Res , vol.31 , pp. 1338-1352
    • Su, H.1    McAvoy, T.J.2    Werbos, P.J.3
  • 5
    • 0039610506 scopus 로고
    • Analysis of hidden nodes for multi-layer perceptron neural networks
    • Jou, I.C.; You, S.S.; Chang, L.W. Analysis of hidden nodes for multi-layer perceptron neural networks. Patt. Recog. 1994, 27, 859-864.
    • (1994) Patt. Recog. , vol.27 , pp. 859-864
    • Jou, I.C.1    You, S.S.2    Chang, L.W.3
  • 7
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 9
    • 84943231282 scopus 로고
    • A new acceleration technique for the backpropagation algorithm
    • San Diego, CA, USA, March 28 - April 1
    • Yu, X.; Loh, N.K.; Miller, W.C. A new acceleration technique for the backpropagation algorithm. In Proceedings of IEEE International Conference on Neural Networks, San Diego, CA, USA, March 28 - April 1, 1993; Vol. III, pp. 1157-1161.
    • (1993) Proceedings of IEEE International Conference on Neural Networks , vol.3 , pp. 1157-1161
    • Yu, X.1    Loh, N.K.2    Miller, W.C.3
  • 12
    • 0742271704 scopus 로고    scopus 로고
    • An improved backpropagation algorithm to avoid the local minima problem
    • Wang, X.G.; Tang, Z.; Tamura, H.; Ishii, M.; Sun, W.D. An improved backpropagation algorithm to avoid the local minima problem. Neurocomputing 2004, 56, 455-460.
    • (2004) Neurocomputing , vol.56 , pp. 455-460
    • Wang, X.G.1    Tang, Z.2    Tamura, H.3    Ishii, M.4    Sun, W.D.5
  • 13
    • 29144457607 scopus 로고    scopus 로고
    • Avoiding the local minima problem in backpropagation algorithm with modified error function
    • Bi, W.; Wang, X.; Tang, Z.; Tamura, H. Avoiding the local minima problem in backpropagation algorithm with modified error function. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2005, E88-A, 3645-3653.
    • (2005) IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , vol.E88-A , pp. 3645-3653
    • Bi, W.1    Wang, X.2    Tang, Z.3    Tamura, H.4
  • 15
    • 0345925131 scopus 로고
    • Assessing a neural net
    • Burke, L. Assessing a neural net. PC AI. 1993, 7, 20-24.
    • (1993) PC AI , vol.7 , pp. 20-24
    • Burke, L.1
  • 16
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • Finnoff, W.; Hergert, F.; Zimmermann, H.G. Improving model selection by nonconvergent methods. Neural Netw. 1993, 6, 771-783.
    • (1993) Neural Netw , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 17
    • 0030222053 scopus 로고    scopus 로고
    • Robust back propagation algorithm as a chemometric tool to prevent the overfitting to outliers
    • Wang, J.H.; Jiang, J.H.; Yu, R.Q. Robust back propagation algorithm as a chemometric tool to prevent the overfitting to outliers. Chemom. Intell. Lab. Syst. 1996, 34, 109-115.
    • (1996) Chemom. Intell. Lab. Syst. , vol.34 , pp. 109-115
    • Wang, J.H.1    Jiang, J.H.2    Yu, R.Q.3
  • 19
    • 84859560197 scopus 로고    scopus 로고
    • An analysis of artificial neural network pruning algorithms in relation to land cover classification accuracy
    • Oxford, UK, April 23
    • Kavzoglu, T.; Vieira, C.A.O. An analysis of artificial neural network pruning algorithms in relation to land cover classification accuracy. In Proceedings of the Remote Sensing Society Student Conference, Oxford, UK, April 23, 1998; pp. 53-58.
    • (1998) Proceedings of the Remote Sensing Society Student Conference , pp. 53-58
    • Kavzoglu, T.1    Vieira, C.A.O.2
  • 20
    • 0000782329 scopus 로고    scopus 로고
    • Overfitting in neural networks: backpropagation, conjugate gradient, and early stopping
    • Denver, CO, USA, November 28-30
    • Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in neural networks: backpropagation, conjugate gradient, and early stopping. In Proceedings of Neural Information Processing Systems Conference, Denver, CO, USA, November 28-30, 2000; pp. 402-408.
    • (2000) Proceedings of Neural Information Processing Systems Conference , pp. 402-408
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 22
    • 44949275618 scopus 로고
    • NN-driven fuzzy reasoning
    • Takagi, T.; Hayashi, I. NN-driven fuzzy reasoning. IJAR 1991, 5, 191-212.
    • (1991) IJAR , vol.5 , pp. 191-212
    • Takagi, T.1    Hayashi, I.2
  • 23
    • 0026923902 scopus 로고
    • On fuzzy modelling using fuzzy neural networks with back propagation algorithm
    • Horikawa, S.; Furuhashi, T.; Uchikawa, Y. On fuzzy modelling using fuzzy neural networks with back propagation algorithm. IEEE Trans. Neural Netw. 1992, 3, 801-806.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 24
    • 0000330562 scopus 로고
    • Neural network-based approximate reasoning: Principles and implementation
    • Nie, J.; Linkens, D. Neural network-based approximate reasoning: Principles and implementation. Int. J. Contr. 1992, 56, 399-413.
    • (1992) Int. J. Contr. , vol.56 , pp. 399-413
    • Nie, J.1    Linkens, D.2
  • 25
    • 84943249492 scopus 로고
    • Fuzzy min-max neural networks for function approximation
    • San Francisco, CA, USA, March 28 - April 21
    • Simpson, P.K.; Jahns, G. Fuzzy min-max neural networks for function approximation. In Proceedings of IEEE International Conference on Neural Networks, San Francisco, CA, USA, March 28 - April 21, 1993; Vol. 3, pp. 1967-1972.
    • (1993) Proceedings of IEEE International Conference on Neural Networks , vol.3 , pp. 1967-1972
    • Simpson, P.K.1    Jahns, G.2
  • 26
    • 0028192731 scopus 로고
    • Logical operation based fuzzy MLP for classification and rule generation
    • Mitra, S.; Pal, S.K. Logical operation based fuzzy MLP for classification and rule generation. Neural Netw. 1994, 7, 353-373.
    • (1994) Neural Netw , vol.7 , pp. 353-373
    • Mitra, S.1    Pal, S.K.2
  • 27
    • 0029273384 scopus 로고
    • Neuro-fuzzy modelling and control
    • Jang, R.J.S.; Sun, C.T. Neuro-fuzzy modelling and control. Proc. IEEE 1995, 83, 378-406.
    • (1995) Proc. IEEE , vol.83 , pp. 378-406
    • Jang, R.J.S.1    Sun, C.T.2
  • 31
    • 33745897368 scopus 로고    scopus 로고
    • Wavelet neural networks for nonlinear time series analysis
    • Zhou, B.; Shi, A.; Cai, F.; Zhang, Y. Wavelet neural networks for nonlinear time series analysis. Lecture Notes Comput. Sci. 2004, 3174, 430-435.
    • (2004) Lecture Notes Comput. Sci. , vol.3174 , pp. 430-435
    • Zhou, B.1    Shi, A.2    Cai, F.3    Zhang, Y.4
  • 32
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 1998, 2, 121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 35
    • 33749751610 scopus 로고
    • Advanced process controls: Applications of adaptive, fuzzy and neural control to the food industry
    • ASAE: St. Joseph, MI, USA
    • Zhang, Q.; Litchfield, J.B. Advanced process controls: Applications of adaptive, fuzzy and neural control to the food industry. In Food Processing Automation; ASAE: St. Joseph, MI, USA, 1992; Vol. II, pp. 169-176.
    • (1992) Food Processing Automation , vol.2 , pp. 169-176
    • Zhang, Q.1    Litchfield, J.B.2
  • 37
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W.S.; Pitts, W.H. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.H.2
  • 39
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psycho. Rev. 1958, 65, 386-408.
    • (1958) Psycho. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 40
    • 0002278965 scopus 로고
    • Adaptive switching circuits
    • Institute of Radio Engineers: New York, NY, USA
    • Widrow, B.; Hoff, M.E. Adaptive switching circuits. In WESCON Convention Record; Institute of Radio Engineers: New York, NY, USA, 1960; Vol. VI, pp. 96-104.
    • (1960) WESCON Convention Record , vol.6 , pp. 96-104
    • Widrow, B.1    Hoff, M.E.2
  • 42
    • 0017083148 scopus 로고
    • Adaptive pattern classification and universal recoding, 1: Parallel development and coding of neural feature detectors
    • Grossberg, S. Adaptive pattern classification and universal recoding, 1: Parallel development and coding of neural feature detectors. Biol. Cybernetics 1976, 23, 187-202.
    • (1976) Biol. Cybernetics , vol.23 , pp. 187-202
    • Grossberg, S.1
  • 43
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • National Academy of Sciences: Washington, DC, USA
    • Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences of the USA; National Academy of Sciences: Washington, DC, USA, 1982; Vol. 79, 8, pp. 2554-2558.
    • (1982) Proceedings of the National Academy of Sciences of the USA , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.J.1
  • 44
    • 0003529238 scopus 로고
    • Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
    • Applied Mathematics, Harvard University: Boston, MA, USA
    • Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Doctoral Dissertation. Applied Mathematics, Harvard University: Boston, MA, USA, 1974.
    • (1974) Doctoral Dissertation
    • Werbos, P.J.1
  • 45
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybernetics 1982, 43, 59-69.
    • (1982) Biol. Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 46
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D.S.; Lowe, D. Multivariable functional interpolation and adaptive networks. Comp. Syst. 1988, 2, 321-355.
    • (1988) Comp. Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 47
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Powell, M.J.D. Restart procedures for the conjugate gradient method. Math. Program. 1977, 12, 241-254.
    • (1977) Math. Program. , vol.12 , pp. 241-254
    • Powell, M.J.D.1
  • 49
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 50
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G.V. Approximation by superpositions of a sigmoidal function, Math. Contr. Signal. Syst. 1989, 2, 303-314.
    • (1989) Math. Contr. Signal. Syst. , vol.2 , pp. 303-314
    • Cybenko, G.V.1
  • 51
    • 0037312471 scopus 로고    scopus 로고
    • A note on the universal approximation capability of support vector machines
    • Hammer, H.; Gersmann, K. A note on the universal approximation capability of support vector machines. Neural Process. Lett. 2003, 17, 43-53.
    • (2003) Neural Process. Lett. , vol.17 , pp. 43-53
    • Hammer, H.1    Gersmann, K.2
  • 53
    • 0028196492 scopus 로고    scopus 로고
    • A novel feature recognition neural network and its application to character recognition
    • Hussain, B.; Kabuka, M.R. A novel feature recognition neural network and its application to character recognition. IEEE Trans. Patt. Anal. Mach. Intell. 1998, 6, 98-106.
    • (1998) IEEE Trans. Patt. Anal. Mach. Intell. , vol.6 , pp. 98-106
    • Hussain, B.1    Kabuka, M.R.2
  • 54
    • 2942522626 scopus 로고    scopus 로고
    • Facial expression recognition using constructive feedforward neural networks
    • Ma, L.; Khorasani, K. Facial expression recognition using constructive feedforward neural networks. IEEE Trans. Syst. Man Cybernetics B 2004, 34,1588-95.
    • (2004) IEEE Trans. Syst. Man Cybernetics B , vol.34 , pp. 1588-1595
    • Ma, L.1    Khorasani, K.2
  • 55
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • Piramuthu, S. Financial credit-risk evaluation with neural and neurofuzzy systems. Eur. J. Operat. Res. 1999, 112, 310-321.
    • (1999) Eur. J. Operat. Res. , vol.112 , pp. 310-321
    • Piramuthu, S.1
  • 60
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. Appl. Statistics 1979, 28, 100-108.
    • (1979) Appl. Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 63
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179-211.
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 65
    • 0029772698 scopus 로고    scopus 로고
    • Artificial evolution of neural networks and its application to feedback control
    • Yun, L.; Haubler, A. Artificial evolution of neural networks and its application to feedback control. Artif. Intell. Eng. 1996, 10, 143-152.
    • (1996) Artif. Intell. Eng. , vol.10 , pp. 143-152
    • Yun, L.1    Haubler, A.2
  • 66
    • 0033116077 scopus 로고    scopus 로고
    • Training Elman and Jordan networks for system identification using genetic algorithms
    • Pham, D.T.; Karaboga, D. Training Elman and Jordan networks for system identification using genetic algorithms. Artif. Intell. Eng. 1999, 13, 107-117.
    • (1999) Artif. Intell. Eng. , vol.13 , pp. 107-117
    • Pham, D.T.1    Karaboga, D.2
  • 67
    • 0001931220 scopus 로고
    • Dynamic system identification using partially recurrent neural networks
    • Pham, D.T.; Liu, X. Dynamic system identification using partially recurrent neural networks. J. Syst. Eng. 1992, 2, 90-97.
    • (1992) J. Syst. Eng. , vol.2 , pp. 90-97
    • Pham, D.T.1    Liu, X.2
  • 68
    • 0030082425 scopus 로고    scopus 로고
    • Training of Elman networks and dynamic system modeling
    • Pham, D.T.; Liu, X. Training of Elman networks and dynamic system modeling. Int. J. Syst. Sci. 1996, 27, 221-226.
    • (1996) Int. J. Syst. Sci. , vol.27 , pp. 221-226
    • Pham, D.T.1    Liu, X.2
  • 69
    • 0029207879 scopus 로고
    • Diagonal recurrent neural networks for dynamic systems control
    • Ku, C.C.; Lee, K.Y. Diagonal recurrent neural networks for dynamic systems control. IEEE Trans. Neural Netw. 1995, 6, 144-156.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 144-156
    • Ku, C.C.1    Lee, K.Y.2
  • 70
    • 0032170991 scopus 로고    scopus 로고
    • Neural network prediction modeling for a continuous snack food frying process
    • Huang, Y.; Whittaker, A.D.; Lacey, R.E. Neural network prediction modeling for a continuous snack food frying process. Trans. ASAE 1998, 41, 1511-1517.
    • (1998) Trans. ASAE , vol.41 , pp. 1511-1517
    • Huang, Y.1    Whittaker, A.D.2    Lacey, R.E.3
  • 71
    • 0001184176 scopus 로고
    • Recurrent backpropagation and the dynamical approach to adaptive neural computation
    • Pineda, F.J. Recurrent backpropagation and the dynamical approach to adaptive neural computation. Neural Comput. 1989, 1, 167-172.
    • (1989) Neural Comput , vol.1 , pp. 167-172
    • Pineda, F.J.1
  • 72
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • William, R.J.; Zipser, D.A. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989, 1, 270-280.
    • (1989) Neural Comput , vol.1 , pp. 270-280
    • William, R.J.1    Zipser, D.A.2
  • 73
    • 0003464265 scopus 로고
    • Technical Report CMU-CS-90-196; Carnegie Mellon University: Pittsburgh, PA, USA
    • Pearlmutter, A.B. Dynamic recurrent neural networks; Technical Report CMU-CS-90-196; Carnegie Mellon University: Pittsburgh, PA, USA, 1990.
    • (1990) Dynamic recurrent neural networks;
    • Pearlmutter, A.B.1
  • 74
    • 84859638507 scopus 로고
    • Sanck food frying process input-output modeling and control through artificial neural networks
    • Ph.D. Dissertation. Texas A&M University: College Station, TX, USA
    • Huang, Y. Sanck food frying process input-output modeling and control through artificial neural networks. Ph.D. Dissertation. Texas A&M University: College Station, TX, USA, 1995.
    • (1995)
    • Huang, Y.1
  • 75
    • 0032123032 scopus 로고    scopus 로고
    • Neural network prediction modeling based on ultrasonic elastograms for meat quality evaluation
    • Huang, Y.; Lacey, R.E.; Whittaker, A.D. Neural network prediction modeling based on ultrasonic elastograms for meat quality evaluation. Trans. ASAE 1998, 41, 1173-1179.
    • (1998) Trans. ASAE , vol.41 , pp. 1173-1179
    • Huang, Y.1    Lacey, R.E.2    Whittaker, A.D.3
  • 79
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh, L.A. Fuzzy sets. Inf. Contr. 1965, 8, 338-353.
    • (1965) Inf. Contr. , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 80
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks - part 2: clustering
    • Simpson, P.K. Fuzzy min-max neural networks - part 2: clustering. IEEE Trans. Fuzzy Syst. 1992, 1, 32-45.
    • (1992) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 32-45
    • Simpson, P.K.1
  • 81
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang, J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybernetics 1993, 23, 665-685.
    • (1993) IEEE Trans. Syst. Man Cybernetics , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 82
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • Daubechies, I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 1988, 41, 909-996.
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 83
    • 0024700097 scopus 로고
    • A theory of multiresolution signal decomposition: The wavelet representation
    • Mallat, S. A theory of multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell. 1989, 11, 674-693.
    • (1989) IEEE Trans. Patt. Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.1
  • 87
    • 10644289086 scopus 로고    scopus 로고
    • Using support vector machines for time series prediction
    • Schölkopf, B., Burges, C.J.C., Smola, A.J., Eds.; MIT Press: Cambridge, MA, USA
    • Müller, K.R.; Smola, A.; Rätsch, G.; Schölkopf, B.; Kohlmorgen, J.; Vapnik, V. Using support vector machines for time series prediction. In Advances in Kernel Methods; Schölkopf, B., Burges, C.J.C., Smola, A.J., Eds.; MIT Press: Cambridge, MA, USA, 1999; pp. 242-253.
    • (1999) Advances in Kernel Methods , pp. 242-253
    • Müller, K.R.1    Smola, A.2    Rätsch, G.3    Schölkopf, B.4    Kohlmorgen, J.5    Vapnik, V.6
  • 88
    • 33646145333 scopus 로고    scopus 로고
    • Dynamic reconstruction of chaotic systems from inter-spike intervals using least squares support vector machines
    • Iplikci, S. Dynamic reconstruction of chaotic systems from inter-spike intervals using least squares support vector machines. Phys. D. 2006, 216, 282-293.
    • (2006) Phys. D. , vol.216 , pp. 282-293
    • Iplikci, S.1
  • 89
    • 33744961449 scopus 로고    scopus 로고
    • Breast cancer survival and chemotherapy: a support vector machine analysis
    • American Mathematical Society: Providence, RI, USA
    • Lee, Y.J.; Mangasarian, O.L.; Wolberg, W.H. Breast cancer survival and chemotherapy: a support vector machine analysis. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science; American Mathematical Society: Providence, RI, USA, 2000; Vol. 55, pp. 1-10.
    • (2000) DIMACS Series in Discrete Mathematics and Theoretical Computer Science , vol.55 , pp. 1-10
    • Lee, Y.J.1    Mangasarian, O.L.2    Wolberg, W.H.3
  • 91
    • 0347296051 scopus 로고    scopus 로고
    • Application of the kernel method to the inverse geosounding problem
    • Hidalgo, H.; Sosa, S.; Gómez-Treviño, E. Application of the kernel method to the inverse geosounding problem. Neural Netw. 2003, 16, 349-353.
    • (2003) Neural Netw , vol.16 , pp. 349-353
    • Hidalgo, H.1    Sosa, S.2    Gómez-Treviño, E.3
  • 92
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • Pal, M. Support vector machines-based modelling of seismic liquefaction potential. Int. J. Num. Anal. Meth. Geomech. 2006, 30, 983-996.
    • (2006) Int. J. Num. Anal. Meth. Geomech. , vol.30 , pp. 983-996
    • Pal, M.1
  • 94
    • 28444492998 scopus 로고    scopus 로고
    • Profile-based direct kernels for remote homology detection and fold recognition
    • Rangwala H.; Karypis, G. Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 2005, 21, 4239-4247.
    • (2005) Bioinformatics , vol.21 , pp. 4239-4247
    • Rangwala, H.1    Karypis, G.2
  • 95
    • 33751209792 scopus 로고    scopus 로고
    • Support vector machines-based generalized predictive control
    • Iplikci, S. Support vector machines-based generalized predictive control. Int. J. Rob. Nonl. Contr. 2006, 16, 843-862.
    • (2006) Int. J. Rob. Nonl. Contr. , vol.16 , pp. 843-862
    • Iplikci, S.1
  • 96
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 97
    • 85009343816 scopus 로고    scopus 로고
    • Division of Automatic Control, Linköpings Universitet: Linköping, Sweden
    • Ljung, L. Perspectives on system identification; Division of Automatic Control, Linköpings Universitet: Linköping, Sweden, 2008.
    • (2008) Perspectives on system identification;
    • Ljung, L.1
  • 98
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.W.; Lin, C.J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 99
    • 0026152163 scopus 로고
    • Modeling sensory color quality of tomato and peach: neural networks and statistical regression
    • Thai, C.N.; Shewfelt, R.L. Modeling sensory color quality of tomato and peach: neural networks and statistical regression. Trans. ASAE 1991, 34, 950-955.
    • (1991) Trans. ASAE , vol.34 , pp. 950-955
    • Thai, C.N.1    Shewfelt, R.L.2
  • 100
    • 2342474960 scopus 로고
    • Growth simulation of alfalfa cuttings in vitro by Kalman filter neural network
    • Tani, A.; Murase, H.; Kiyota, M.; Honami, N. Growth simulation of alfalfa cuttings in vitro by Kalman filter neural network. Acta Horticul. 1992, 319, 671-676.
    • (1992) Acta Horticul , vol.319 , pp. 671-676
    • Tani, A.1    Murase, H.2    Kiyota, M.3    Honami, N.4
  • 101
    • 0027643570 scopus 로고
    • Classification of apple surface features using machine vision and neural networks
    • Yang, Q. Classification of apple surface features using machine vision and neural networks. Comput. Electron. Agric. 1993, 9, 1-12.
    • (1993) Comput. Electron. Agric. , vol.9 , pp. 1-12
    • Yang, Q.1
  • 102
    • 0000818609 scopus 로고
    • Corn kernel breakage classification by machine vision using a neural network classifier
    • Liao, K.; Paulsen, M.R.; Reid, J.F. Corn kernel breakage classification by machine vision using a neural network classifier. Trans. ASAE 1993, 36, 1949-1953.
    • (1993) Trans. ASAE , vol.36 , pp. 1949-1953
    • Liao, K.1    Paulsen, M.R.2    Reid, J.F.3
  • 103
    • 0000355580 scopus 로고
    • Comparison of a neural network and traditional classifier for machine vision inspection of potatoes
    • Deck, S.H.; Morrow, C.T.; Heinemann, P.H.; Sommer III, H.J. Comparison of a neural network and traditional classifier for machine vision inspection of potatoes. Appl. Eng. Agric. 1995, 11, 319-326.
    • (1995) Appl. Eng. Agric. , vol.11 , pp. 319-326
    • Deck, S.H.1    Morrow, C.T.2    Heinemann, P.H.3    Sommer III, H.J.4
  • 104
    • 47749091751 scopus 로고    scopus 로고
    • Yield estimation and clustering of chickpea genotypes using soft computing techniques
    • Khazaei, J.; Naghavi, M.R.; Jahansouz, M.R.; Salimi-Khorshidi, G. Yield estimation and clustering of chickpea genotypes using soft computing techniques. Agron. J. 2008, 100, 1077-1087.
    • (2008) Agron. J. , vol.100 , pp. 1077-1087
    • Khazaei, J.1    Naghavi, M.R.2    Jahansouz, M.R.3    Salimi-Khorshidi, G.4
  • 105
    • 42649134770 scopus 로고    scopus 로고
    • Identification of stored-grain age using electronic nose by ANN
    • Zhang, H.; Wang, J. Identification of stored-grain age using electronic nose by ANN. Appl. Eng. Agric. 2008, 24, 227-231.
    • (2008) Appl. Eng. Agric. , vol.24 , pp. 227-231
    • Zhang, H.1    Wang, J.2
  • 106
    • 44449122355 scopus 로고    scopus 로고
    • Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings
    • Sun, G.; Hoff, S.J.; Zelle, B.C.; Nelson, M.A. Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings. Trans. ASABE 2008, 51, 685-694.
    • (2008) Trans. ASABE , vol.51 , pp. 685-694
    • Sun, G.1    Hoff, S.J.2    Zelle, B.C.3    Nelson, M.A.4
  • 107
    • 49549109389 scopus 로고    scopus 로고
    • Comparison of plant water stress detection ability of color and graylevel texture in sunagoke moss
    • Ondimu, S.N.; Murase, H. Comparison of plant water stress detection ability of color and graylevel texture in sunagoke moss. Trans. ASABE 2008, 51, 1111-1120.
    • (2008) Trans. ASABE , vol.51 , pp. 1111-1120
    • Ondimu, S.N.1    Murase, H.2
  • 108
    • 49549099561 scopus 로고    scopus 로고
    • Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy
    • Wu, D.; Feng, L.; Zhang, C.; He, Y. Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Trans. ASABE 2008, 51, 1133-1139.
    • (2008) Trans. ASABE , vol.51 , pp. 1133-1139
    • Wu, D.1    Feng, L.2    Zhang, C.3    He, Y.4
  • 109
    • 0000378923 scopus 로고
    • Application of neural network modeling in fuzzy extrusion control
    • Linko, P.; Zhu, Y.H.; Linko, S. Application of neural network modeling in fuzzy extrusion control. Food Bioprod. process. 1992, 70, 131-137.
    • (1992) Food Bioprod. process. , vol.70 , pp. 131-137
    • Linko, P.1    Zhu, Y.H.2    Linko, S.3
  • 110
    • 0031148010 scopus 로고    scopus 로고
    • Neural network modeling and fuzzy control simulation for bread-baking process
    • Kim, S.; Cho, I. Neural network modeling and fuzzy control simulation for bread-baking process. Trans. ASAE 1997, 40, 671-676.
    • (1997) Trans. ASAE , vol.40 , pp. 671-676
    • Kim, S.1    Cho, I.2
  • 111
    • 0031247985 scopus 로고    scopus 로고
    • Optimization of a fuzzy controller for fruit storage using neural networks and genetic algorithms
    • Morimoto, T.; Suzuki, J.; Hashimoto, Y. Optimization of a fuzzy controller for fruit storage using neural networks and genetic algorithms. Eng. Appl. Artif. Intell. 1997, 10, 453-461.
    • (1997) Eng. Appl. Artif. Intell. , vol.10 , pp. 453-461
    • Morimoto, T.1    Suzuki, J.2    Hashimoto, Y.3
  • 112
    • 0035727321 scopus 로고    scopus 로고
    • Optimization of fuzzy evapotranspiration model through neural training with input-output examples
    • Odhiambo, L.O.; Yoder, R.E.; Yoder, D.C.; Hines, J.W. Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans. ASAE 2001, 44, 1625-1633.
    • (2001) Trans. ASAE , vol.44 , pp. 1625-1633
    • Odhiambo, L.O.1    Yoder, R.E.2    Yoder, D.C.3    Hines, J.W.4
  • 113
    • 0141790741 scopus 로고    scopus 로고
    • Self-organizing map combined with a fuzzy clustering for color image segmentation of edible beans
    • Chtioui, Y.; Panigrahi, S.; Backer, L.F. Self-organizing map combined with a fuzzy clustering for color image segmentation of edible beans. Trans. ASAE 2003, 46, 831-838.
    • (2003) Trans. ASAE , vol.46 , pp. 831-838
    • Chtioui, Y.1    Panigrahi, S.2    Backer, L.F.3
  • 114
    • 6344261812 scopus 로고    scopus 로고
    • Digital camera operation and fuzzy logic classification of uniform plant, soil, and residue color images
    • Meyer, G.E.; Hindman, T.W.; Jones, D.D.; Mortensen, D.A. Digital camera operation and fuzzy logic classification of uniform plant, soil, and residue color images. Appl. Eng. Agric. 2004, 20, 519-529.
    • (2004) Appl. Eng. Agric. , vol.20 , pp. 519-529
    • Meyer, G.E.1    Hindman, T.W.2    Jones, D.D.3    Mortensen, D.A.4
  • 115
    • 1842429924 scopus 로고    scopus 로고
    • Investigation of a fuzzy-neural network application in classification of soils using ground-penetrating radar imagery
    • Odhiambo, L.O.; Freeland, R.S.; Yoder, R.E.; Hines, J.W. Investigation of a fuzzy-neural network application in classification of soils using ground-penetrating radar imagery. Appl. Eng. Agric. 2004, 20, 109-117.
    • (2004) Appl. Eng. Agric. , vol.20 , pp. 109-117
    • Odhiambo, L.O.1    Freeland, R.S.2    Yoder, R.E.3    Hines, J.W.4
  • 116
    • 33750585063 scopus 로고    scopus 로고
    • A hybrid approach to hydraulic vane pump condition monitoring and fault detection
    • Hancock, K.M.; Zhang, Q. A hybrid approach to hydraulic vane pump condition monitoring and fault detection. Trans. ASABE 2006, 49, 1203-1211.
    • (2006) Trans. ASABE , vol.49 , pp. 1203-1211
    • Hancock, K.M.1    Zhang, Q.2
  • 117
    • 36249027698 scopus 로고    scopus 로고
    • Artificial intelligence controller for automatic multispectral camera parameter adjustment
    • Xiang, H.; Tian, L.F. Artificial intelligence controller for automatic multispectral camera parameter adjustment. Trans. ASABE 2007, 50, 1873-1881.
    • (2007) Trans. ASABE , vol.50 , pp. 1873-1881
    • Xiang, H.1    Tian, L.F.2
  • 122
    • 76549105638 scopus 로고    scopus 로고
    • Eggshell crack detection by acoustic impulse response and support vector machine
    • Deng, X.; Wang, Q.; Wu, L.; Gao, H.; Wen, Y.; Wang, S. Eggshell crack detection by acoustic impulse response and support vector machine. African J. Agric. Res. 2009, 4, 40-48.
    • (2009) African J. Agric. Res. , vol.4 , pp. 40-48
    • Deng, X.1    Wang, Q.2    Wu, L.3    Gao, H.4    Wen, Y.5    Wang, S.6
  • 123
    • 46849114555 scopus 로고    scopus 로고
    • Application of distributed SVM architectures in classifying forest data cover types
    • Trebar, M.; Steele, N. Application of distributed SVM architectures in classifying forest data cover types. Comput. Electron. Agric. 2008, 63, 119-130.
    • (2008) Comput. Electron. Agric. , vol.63 , pp. 119-130
    • Trebar, M.1    Steele, N.2
  • 124
    • 76549090010 scopus 로고    scopus 로고
    • Neural-network-based classification of meat: evaluation of techniques to overcome small dataset problems
    • Khot, L.R.; Panigrahi, S.; Woznica, S. Neural-network-based classification of meat: evaluation of techniques to overcome small dataset problems. Biol. Eng. 2008, 1, 127-143.
    • (2008) Biol. Eng. , vol.1 , pp. 127-143
    • Khot, L.R.1    Panigrahi, S.2    Woznica, S.3
  • 125
    • 33846635105 scopus 로고    scopus 로고
    • Discrimination of black walnut shell and pulp in hyperspectral fluorescence Imagery using Gaussian kernel function approach
    • Jiang, L.; Zhu, B.; Rao, X.; Berney, G.; Tao, Y. Discrimination of black walnut shell and pulp in hyperspectral fluorescence Imagery using Gaussian kernel function approach. J. Food Eng. 2007, 81, 108-117.
    • (2007) J. Food Eng. , vol.81 , pp. 108-117
    • Jiang, L.1    Zhu, B.2    Rao, X.3    Berney, G.4    Tao, Y.5
  • 126
    • 36248967204 scopus 로고    scopus 로고
    • Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine
    • Zhang, H.; Paliwal, J.; Jayas, D.S.; White, N.D.G. Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine. Trans. ASABE 2007, 50, 1779-1785.
    • (2007) Trans. ASABE , vol.50 , pp. 1779-1785
    • Zhang, H.1    Paliwal, J.2    Jayas, D.S.3    White, N.D.G.4
  • 127
    • 32644445913 scopus 로고    scopus 로고
    • Application of support vector machine technology for weed and nitrogen stress detection in corn
    • Karimi, Y.; Prasher, S.O.; Patel, R.M.; Kim, S.H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Comput. Electron. Agric. 2006, 51, 99-109.
    • (2006) Comput. Electron. Agric. , vol.51 , pp. 99-109
    • Karimi, Y.1    Prasher, S.O.2    Patel, R.M.3    Kim, S.H.4
  • 129
    • 33846807301 scopus 로고    scopus 로고
    • Study on identification of tea using computer vision based on support vector machine
    • Chen, Q.; Zhao, J.; Cai, J.; Wang, X. Study on identification of tea using computer vision based on support vector machine. Chinese J. Sci. Instrum. 2006, 27, 1704-1706.
    • (2006) Chinese J. Sci. Instrum. , vol.27 , pp. 1704-1706
    • Chen, Q.1    Zhao, J.2    Cai, J.3    Wang, X.4
  • 130
    • 33845667882 scopus 로고    scopus 로고
    • Spectral data compression and analyses techniques to discriminate wheat classes
    • Wang, W.; Paliwal, J. Spectral data compression and analyses techniques to discriminate wheat classes. Trans. ASABE 2006, 49, 1607-1612.
    • (2006) Trans. ASABE , vol.49 , pp. 1607-1612
    • Wang, W.1    Paliwal, J.2
  • 131
    • 33947171532 scopus 로고    scopus 로고
    • Detection of underdeveloped hazelnuts from fully developed nuts by impact acoustics
    • Onaran, I.; Pearson, T.C.; Yardimci, Y.; Cetin, A.E. Detection of underdeveloped hazelnuts from fully developed nuts by impact acoustics. Trans. ASABE 2006, 49, 1971-1976.
    • (2006) Trans. ASABE , vol.49 , pp. 1971-1976
    • Onaran, I.1    Pearson, T.C.2    Yardimci, Y.3    Cetin, A.E.4
  • 132
    • 18544377322 scopus 로고    scopus 로고
    • Classification of electronic nose data with support vector machines
    • Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuat. B 2005, 107, 730-737.
    • (2005) Sens. Actuat. B , vol.107 , pp. 730-737
    • Pardo, M.1    Sberveglieri, G.2
  • 133
    • 24344451161 scopus 로고    scopus 로고
    • Classification of modified starches by Fourier transform infrared spectroscopy using support vector machines
    • Pierna, J.A.F.; Volery, P.; Besson, R.; Baeten, V.; Dardenne, P. Classification of modified starches by Fourier transform infrared spectroscopy using support vector machines. J. Agric. Food Chem. 2005, 53, 6581-6585.
    • (2005) J. Agric. Food Chem. , vol.53 , pp. 6581-6585
    • Pierna, J.A.F.1    Volery, P.2    Besson, R.3    Baeten, V.4    Dardenne, P.5
  • 134
    • 1342264266 scopus 로고    scopus 로고
    • Classification of milk by means of an electronic nose and SVM neural network
    • Brudzewski, K.; Osowski, S.; Markiewicz, T. Classification of milk by means of an electronic nose and SVM neural network. Sens. Actuat. B 2004, 98, 291-298.
    • (2004) Sens. Actuat. B , vol.98 , pp. 291-298
    • Brudzewski, K.1    Osowski, S.2    Markiewicz, T.3
  • 135
    • 35648982629 scopus 로고    scopus 로고
    • Study on plant disease recognition using support vector machine and chromaticity moments
    • Tian, Y.; Zhang, C.; Li, C. Study on plant disease recognition using support vector machine and chromaticity moments. Trans. Chinese Soc. Agric. Mach. 2004, 35, 95-98.
    • (2004) Trans. Chinese Soc. Agric. Mach. , vol.35 , pp. 95-98
    • Tian, Y.1    Zhang, C.2    Li, C.3
  • 136
    • 0141684902 scopus 로고    scopus 로고
    • Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging
    • Portland, Oregon, USA, July 20-24
    • Fletcher, J.T.; Kong, S.G. Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging. In Proceedings of the International Joint Conference on Neural Networks, Portland, Oregon, USA, July 20-24, 2003; Vol. I, pp.149-153.
    • (2003) Proceedings of the International Joint Conference on Neural Networks , vol.1 , pp. 149-153
    • Fletcher, J.T.1    Kong, S.G.2
  • 140
    • 70350545829 scopus 로고    scopus 로고
    • Prediction of pork meat total viable bacteria count using hyperspectral imaging system and support vector machines
    • Providence, RI, USA, June 28-29; CD-ROM
    • Peng, Y.; Wang, W. Prediction of pork meat total viable bacteria count using hyperspectral imaging system and support vector machines. In Proceedings of the Food Processing Automation Conference, Providence, RI, USA, June 28-29, 2008; CD-ROM.
    • (2008) Proceedings of the Food Processing Automation Conference
    • Peng, Y.1    Wang, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.