메뉴 건너뛰기




Volumn 21, Issue 2-3, 2008, Pages 450-457

Robust BMPM training based on second-order cone programming and its application in medical diagnosis

Author keywords

Biased minimax probability machine; Medical diagnosis; Second order cone programming

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; GLOBAL OPTIMIZATION; MATRIX ALGEBRA;

EID: 40649114452     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.12.051     Document Type: Article
Times cited : (26)

References (27)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D.W., Kibler D., and Albert M.K. Instance-based learning algorithms. Machine Learning 6 1 (1991) 37-66
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 4
    • 40649102016 scopus 로고    scopus 로고
    • Cardie, C., & Nowe, N. (1997). Improving minority class prediction using case-specific feature weights. In Proceedings of the 14th international conference on machine learnin (pp. 57-65)
    • Cardie, C., & Nowe, N. (1997). Improving minority class prediction using case-specific feature weights. In Proceedings of the 14th international conference on machine learnin (pp. 57-65)
  • 6
    • 0037332849 scopus 로고    scopus 로고
    • Increasing sensitivity of preterm birth by changing rule strengths
    • Grzymala-Busse J.W., Goodwin L.K., and Zhang X. Increasing sensitivity of preterm birth by changing rule strengths. Pattern Recognition Letters 24 6 (2003) 903-910
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 903-910
    • Grzymala-Busse, J.W.1    Goodwin, L.K.2    Zhang, X.3
  • 8
    • 40649100390 scopus 로고    scopus 로고
    • Huang, K., Yang, H., King, I., & Lyu, M. (2004b). Learning large margin classifiers locally and globally. In Proceedings of international conference on machine learning (pp. 51-59)
    • Huang, K., Yang, H., King, I., & Lyu, M. (2004b). Learning large margin classifiers locally and globally. In Proceedings of international conference on machine learning (pp. 51-59)
  • 10
    • 33646373698 scopus 로고    scopus 로고
    • Maximizing sensitivity in medical diagnosis using biased minimax probability machine
    • Huang K., Yang H., King I., and Lyu M. Maximizing sensitivity in medical diagnosis using biased minimax probability machine. IEEE Transactions on Biomedical Engineering 53 5 (2006) 821-831
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.5 , pp. 821-831
    • Huang, K.1    Yang, H.2    King, I.3    Lyu, M.4
  • 11
    • 40649099917 scopus 로고    scopus 로고
    • Huang, K., Yang, H., King, I., Lyu, M., & Chan, L. (2004c). Biased minimax probability machine for medical diagnosis. In Proceedings of annals of mathematics and artificial intelligence (pp. 1103-1110)
    • Huang, K., Yang, H., King, I., Lyu, M., & Chan, L. (2004c). Biased minimax probability machine for medical diagnosis. In Proceedings of annals of mathematics and artificial intelligence (pp. 1103-1110)
  • 13
    • 40649092147 scopus 로고    scopus 로고
    • Jordan, M. (1995). Why the logistic function? A tutorial discussion on probabilities and neural networks (Technical report). MIT Computational Cognitive Science
    • Jordan, M. (1995). Why the logistic function? A tutorial discussion on probabilities and neural networks (Technical report). MIT Computational Cognitive Science
  • 14
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • Kononenko I. Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23 1 (2001) 89-109
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 15
    • 40649115292 scopus 로고    scopus 로고
    • Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In Proceedings of 14th international conference on machine learning (pp. 179-186)
    • Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In Proceedings of 14th international conference on machine learning (pp. 179-186)
  • 17
    • 0026992322 scopus 로고    scopus 로고
    • Langley, P., Iba, W., & Thompson, K. (1992). An analysis of bayesian classifiers. In Proceedings of national conference on artificial intelligence (pp. 223-228)
    • Langley, P., Iba, W., & Thompson, K. (1992). An analysis of bayesian classifiers. In Proceedings of national conference on artificial intelligence (pp. 223-228)
  • 18
    • 20344396845 scopus 로고    scopus 로고
    • Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of IEEE international symposium on computer aided control system design (pp. 284-289)
    • Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of IEEE international symposium on computer aided control system design (pp. 284-289)
  • 19
    • 84870055067 scopus 로고    scopus 로고
    • Macskassy, S. A., Hirsh, H., Banerjee, A., & Dayanik, A. A. (2001). Using text classifiers for numerical classification. In Proceedings of the seventeenth international joint conference on artificial intelligence
    • Macskassy, S. A., Hirsh, H., Banerjee, A., & Dayanik, A. A. (2001). Using text classifiers for numerical classification. In Proceedings of the seventeenth international joint conference on artificial intelligence
  • 20
    • 0141990688 scopus 로고    scopus 로고
    • Improved rooftop detection in aerial images with machine learning
    • Maloof M., Langley P., Binford T., Nevatia R., and Sage S. Improved rooftop detection in aerial images with machine learning. Machine Learning 53 (2004) 157-191
    • (2004) Machine Learning , vol.53 , pp. 157-191
    • Maloof, M.1    Langley, P.2    Binford, T.3    Nevatia, R.4    Sage, S.5
  • 21
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam K., Mccallum A., Thrun S., and Mitchell T. Text classification from labeled and unlabeled documents using em. Machine Learning 39 2 (1999) 103-134
    • (1999) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.2    Thrun, S.3    Mitchell, T.4
  • 22
    • 33750549864 scopus 로고    scopus 로고
    • Peng, X., & King, I. (2006a). Biased minimax probability machine active learning for relevance feedback in content-based image retrieval. In Proceedings of international conference on intelligent data engineering and automated learning (pp. 953-960)
    • Peng, X., & King, I. (2006a). Biased minimax probability machine active learning for relevance feedback in content-based image retrieval. In Proceedings of international conference on intelligent data engineering and automated learning (pp. 953-960)
  • 23
    • 33750577216 scopus 로고    scopus 로고
    • Peng, X., & King, I. (2006b). Imbalanced learning in relevance feedback with biased minimax probability machine for image retrieval tasks. In Proceedings of international conference on neural information processing (pp. 342-351)
    • Peng, X., & King, I. (2006b). Imbalanced learning in relevance feedback with biased minimax probability machine for image retrieval tasks. In Proceedings of international conference on neural information processing (pp. 342-351)
  • 24
    • 51749103550 scopus 로고    scopus 로고
    • Peng, X., & King, I. (2007). Large scale imbalanced classification with biased minimax probability machine. In Proceedings of 20th international joint conference on neural networks (pp. 1685-1690)
    • Peng, X., & King, I. (2007). Large scale imbalanced classification with biased minimax probability machine. In Proceedings of 20th international joint conference on neural networks (pp. 1685-1690)
  • 26
    • 0033296299 scopus 로고    scopus 로고
    • Using sedumi 1.02: A matlab toolbox for optimization over symmetric cones
    • Sturm J.F. Using sedumi 1.02: A matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11 (1999) 625-653
    • (1999) Optimization Methods and Software , vol.11 , pp. 625-653
    • Sturm, J.F.1
  • 27
    • 0034333656 scopus 로고    scopus 로고
    • Model selection for a medical diagnostic decision support system: A breast cancer detection case
    • West D., and West V. Model selection for a medical diagnostic decision support system: A breast cancer detection case. Artificial Intelligence in Medicine 20 3 (2000) 183-204
    • (2000) Artificial Intelligence in Medicine , vol.20 , Issue.3 , pp. 183-204
    • West, D.1    West, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.