메뉴 건너뛰기




Volumn 31, Issue 6, 2012, Pages 1181-1194

Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields

Author keywords

Gad enhanced lesions; graphical image segmentation; magnetic resonance imaging (MRI); multiple sclerosis; pathology detection

Indexed keywords

AUTOMATIC DETECTION; BRAIN MRI; CLOSE PROXIMITY; CONDITIONAL RANDOM FIELD; DATA SETS; FALSE POSITIVE; GAD-ENHANCED LESIONS; LOGISTIC REGRESSION CLASSIFIER; MARKOV RANDOM FIELDS; MULTI-CENTER CLINICAL TRIALS; MULTI-MODAL; MULTIPLE SCLEROSIS; MULTIPLE SCLEROSIS LESIONS; NORMAL STRUCTURE; PROBABILISTIC FRAMEWORK;

EID: 84861908659     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMI.2012.2186639     Document Type: Article
Times cited : (48)

References (44)
  • 2
    • 0031836559 scopus 로고    scopus 로고
    • Automatic segmentation of gadolinium-enhanced multiple sclerosis lesions
    • DOI 10.1002/mrm.1910390611
    • B. Bedell and P. Narayana, "Automatic segmentation of gadoliniumenhanced multiple sclerosis lesions," Magn. Reson. Med., vol. 39, pp. 935-940, 1998. (Pubitemid 28237752)
    • (1998) Magnetic Resonance in Medicine , vol.39 , Issue.6 , pp. 935-940
    • Bedell, B.J.1    Narayana, P.A.2
  • 3
    • 0035996452 scopus 로고    scopus 로고
    • Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis
    • DOI 10.1118/1.1487422
    • R. He and P. Narayana, "Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis," Med. Phys., vol. 29, pp. 1536-1546, 2002. (Pubitemid 34774586)
    • (2002) Medical Physics , vol.29 , Issue.7 , pp. 1536-1546
    • He, R.1    Narayana, P.A.2
  • 5
    • 0035413307 scopus 로고    scopus 로고
    • Automated segmentation of multiple sclerosis lesions by model outlier detection
    • DOI 10.1109/42.938237, PII S0278006201065806
    • K. Leemput, F. Maes,D.Vandermeulen, A. Colchester, and P. Suetens, "Automated segmentation of multiple sclerosis lesions by model outlier detection," IEEE Trans. Med. Imag., vol. 20, no. 8, pp. 677-688, Aug. 2001. (Pubitemid 32813541)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.8 , pp. 677-688
    • Van Leemput, K.1    Maes, F.2    Vandermeulen, D.3    Colchester, A.4    Suetens, P.5
  • 8
    • 0036826508 scopus 로고    scopus 로고
    • Automaticòpipelineó analysis of 3D MRI data for clinical trials: Application to multiple sclerosis
    • A. Zijdenbos, R. Forghani, and A. Evans, "Automaticò pipelineó analysis of 3D MRI data for clinical trials: Application to multiple sclerosis," IEEE Trans. Med. Imaging, vol. 21, pp. 1280-1291, 2002.
    • (2002) IEEE Trans. Med. Imaging , vol.21 , pp. 1280-1291
    • Zijdenbos, A.1    Forghani, R.2    Evans, A.3
  • 10
    • 0142192295 scopus 로고    scopus 로고
    • Conditional fandom fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional fandom fields: Probabilistic models for segmenting and labeling sequence data," in Proc. 18th Int. Conf. Mach. Learn., 2001, pp. 282-289.
    • (2001) Proc. 18th Int. Conf. Mach. Learn. , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 16
    • 58849150453 scopus 로고    scopus 로고
    • Segmenting brain tumors using pseudo-conditional random fields
    • C. Lee, S. Wang, A. Murtha, M. Brown, and R. Greiner, "Segmenting brain tumors using pseudo-conditional random fields," Proc. MICCAI, pp. 359-366, 2008.
    • (2008) Proc. MICCAI , pp. 359-366
    • Lee, C.1    Wang, S.2    Murtha, A.3    Brown, M.4    Greiner, R.5
  • 18
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures," J. R. Stat. Soc., vol. 6, pp. 259-302, 1986.
    • (1986) J. R. Stat. Soc. , vol.6 , pp. 259-302
    • Besag, J.1
  • 21
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • A. Ng and M. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes," Proc. NIPS, pp. 841-848, 2002.
    • (2002) Proc. NIPS , pp. 841-848
    • Ng, A.1    Jordan, M.2
  • 22
    • 33646456481 scopus 로고    scopus 로고
    • Support vector random fields for spatial classification
    • C. Lee, R. Greiner, and M. Schmidt, "Support vector random fields for spatial classification," Proc. PKDD, pp. 121-132, 2005.
    • (2005) Proc. PKDD , pp. 121-132
    • Lee, C.1    Greiner, R.2    Schmidt, M.3
  • 23
    • 84861912480 scopus 로고    scopus 로고
    • Detection of gad-enhancing lesions in multiple sclerosis using conditional random fields
    • Z. Karimaghaloo, M. Shah, S. Francis, D. L. Arnold, D. L. Collins, and T. Arbel, "Detection of gad-enhancing lesions in multiple sclerosis using conditional random fields," Proc. MICCAI, pp. 41-48, 2010.
    • (2010) Proc. MICCAI , pp. 41-48
    • Karimaghaloo, Z.1    Shah, M.2    Francis, S.3    Arnold, D.L.4    Collins, D.L.5    Arbel, T.6
  • 24
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 28
    • 56749103990 scopus 로고    scopus 로고
    • Learning CRFs using graph cuts
    • M. Szummer, P. Kohli, and D. Hoiem, "Learning CRFs using graph cuts," Proc. ECCV, vol. 5303, pp. 582-595, 2008.
    • (2008) Proc. ECCV , vol.5303 , pp. 582-595
    • Szummer, M.1    Kohli, P.2    Hoiem, D.3
  • 31
    • 34547987363 scopus 로고    scopus 로고
    • Piecewise pseudo-likelihood for efficient training of conditional random fields
    • C. Sutton and A.McCallum, "Piecewise pseudo-likelihood for efficient training of conditional random fields," ICML, pp. 863-870, 2007.
    • (2007) ICML , pp. 863-870
    • Sutton, C.1    Mccallum, A.2
  • 32
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Sep.
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE Trans. Pattern Anal.Mach. Learn., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal.Mach. Learn. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 33
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study
    • K. Murphy, Y. Weiss, and M. Jordan, "Loopy belief propagation for approximate inference: An empirical study," Proc. Uncertainty AI, pp. 467-475, 1999.
    • (1999) Proc. Uncertainty AI , pp. 467-475
    • Murphy, K.1    Weiss, Y.2    Jordan, M.3
  • 34
    • 0000388721 scopus 로고    scopus 로고
    • Generalized belief propagation
    • J. Yedidia, W. Freeman, and Y. Weiss, "Generalized belief propagation," Proc. NIPS, vol. 13, pp. 689-695, 2000.
    • (2000) Proc. NIPS , vol.13 , pp. 689-695
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3
  • 35
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • DOI 10.1109/TPAMI.2006.200
    • V. Kolmogorov, "Convergent tree-reweighted message passing for energy minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1568-1583, Oct. 2006. (Pubitemid 46405078)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 36
    • 0028287162 scopus 로고
    • Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
    • D. Collins, P. Neelin, T. Peters, and A. Evans, "Automatic 3D intersubject registration of MR volumetric data in standardised Talairach space," Comp. Assist. Tomogr., vol. 18, pp. 192-205, 1994. (Pubitemid 24100002)
    • (1994) Journal of Computer Assisted Tomography , vol.18 , Issue.2 , pp. 192-205
    • Collins, D.L.1    Neelin, P.2    Peters, T.M.3    Evans, A.C.4
  • 37
    • 0034026246 scopus 로고    scopus 로고
    • 2 measurements using MRI
    • DOI 10.1002/(SICI)1522-2594(200004)43: 4<589::AID-MRM14>3.0.CO;2-2
    • J. Sled and B. Pike, "Correction for b(1) and b(0) variations in quantitative T2 measurements using MRI," Mag. Reson. Med., vol. 43, pp. 589-593, 2000. (Pubitemid 30191083)
    • (2000) Magnetic Resonance in Medicine , vol.43 , Issue.4 , pp. 589-593
    • Sled, J.G.1    Pike, G.B.2
  • 38
    • 0344374438 scopus 로고    scopus 로고
    • On standardizing the MR image intensity scale
    • L. Nyul and J. Udupa, "On standardizing the MR image intensity scale," Comp. Assist. Tomogr., vol. 42, pp. 1072-1081, 1999.
    • (1999) Comp. Assist. Tomogr. , vol.42 , pp. 1072-1081
    • Nyul, L.1    Udupa, J.2
  • 39
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • DOI 10.1002/hbm.10062
    • S. Smith, "Fast robust automated brain extraction," Hum. BrainMapp., vol. 17, pp. 143-155, 2002. (Pubitemid 35253488)
    • (2002) Human Brain Mapping , vol.17 , Issue.3 , pp. 143-155
    • Smith, S.M.1
  • 40
    • 0010581323 scopus 로고    scopus 로고
    • A probabilistic atlas and reference system for the human brain
    • J. Mazziotta et al., "A probabilistic atlas and reference system for the human brain," Philos. Trans. R. Soc., vol. 356, pp. 1293-1322, 2001.
    • (2001) Philos. Trans. R. Soc. , vol.356 , pp. 1293-1322
    • Mazziotta, J.1
  • 41
    • 0030493826 scopus 로고    scopus 로고
    • A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables
    • T. Coleman and Y. Li, "A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables," Journal on Optimization, vol. 6, pp. 1040-1058, 1996.
    • (1996) Journal on Optimization , vol.6 , pp. 1040-1058
    • Coleman, T.1    Li, Y.2
  • 42
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics, pp. 80-83, 1945.
    • (1945) Biometrics , pp. 80-83
    • Wilcoxon, F.1
  • 44
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," J. Mach. Learn. Res., pp. 1453-1484, 2005.
    • (2005) J. Mach. Learn. Res. , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.