-
1
-
-
18844476424
-
Computer-assisted quantitation of enhancing lesions in multiple sclerosis: Correlation with clinical classification
-
Y. Miki, R. Grossman, J. Udupa, S. Samarasekera, M. van Buchem, B. Cooney, S. Pollack, D. Kolson, C. Constantinescu, and M. L. J. M. Polansky, "Computer-assisted quantitation of enhancing lesions in multiple sclerosis: correlation with clinical classification," Am. J. Neuroradiol., vol. 18, pp. 705-710, 1997. (Pubitemid 27175968)
-
(1997)
American Journal of Neuroradiology
, vol.18
, Issue.4
, pp. 705-710
-
-
Miki, Y.1
Grossman, R.I.2
Udupa, J.K.3
Samarasekera, S.4
Van Buchem, M.A.5
Cooney, B.S.6
Pollack, S.N.7
Kolson, D.L.8
Constantinescu, C.9
Polansky, M.10
Mannon, L.J.11
-
2
-
-
0031836559
-
Automatic segmentation of gadolinium-enhanced multiple sclerosis lesions
-
DOI 10.1002/mrm.1910390611
-
B. Bedell and P. Narayana, "Automatic segmentation of gadoliniumenhanced multiple sclerosis lesions," Magn. Reson. Med., vol. 39, pp. 935-940, 1998. (Pubitemid 28237752)
-
(1998)
Magnetic Resonance in Medicine
, vol.39
, Issue.6
, pp. 935-940
-
-
Bedell, B.J.1
Narayana, P.A.2
-
3
-
-
0035996452
-
Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis
-
DOI 10.1118/1.1487422
-
R. He and P. Narayana, "Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis," Med. Phys., vol. 29, pp. 1536-1546, 2002. (Pubitemid 34774586)
-
(2002)
Medical Physics
, vol.29
, Issue.7
, pp. 1536-1546
-
-
He, R.1
Narayana, P.A.2
-
4
-
-
34247898959
-
Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis
-
DOI 10.1002/jmri.20896
-
S. Datta, B.Sajja, R. He,R.Gupta, J.Wolinsky, and P. Narayana, "Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis," J. Magn. Reson. Imag., vol. 25, pp. 932-937, 2007. (Pubitemid 46697562)
-
(2007)
Journal of Magnetic Resonance Imaging
, vol.25
, Issue.5
, pp. 932-937
-
-
Datta, S.1
Sajja, B.R.2
He, R.3
Gupta, R.K.4
Wolinsky, J.S.5
Narayana, P.A.6
-
5
-
-
0035413307
-
Automated segmentation of multiple sclerosis lesions by model outlier detection
-
DOI 10.1109/42.938237, PII S0278006201065806
-
K. Leemput, F. Maes,D.Vandermeulen, A. Colchester, and P. Suetens, "Automated segmentation of multiple sclerosis lesions by model outlier detection," IEEE Trans. Med. Imag., vol. 20, no. 8, pp. 677-688, Aug. 2001. (Pubitemid 32813541)
-
(2001)
IEEE Transactions on Medical Imaging
, vol.20
, Issue.8
, pp. 677-688
-
-
Van Leemput, K.1
Maes, F.2
Vandermeulen, D.3
Colchester, A.4
Suetens, P.5
-
6
-
-
0036153999
-
Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy
-
DOI 10.1002/jmri.10053
-
X. Wei, S. K. Warfield, K. H. Zou, Y. Wu, X. Li, A. Guimond, J. P. Mugler, R. R. Benson, L.Wolfson, H. L.Weiner, and C. R. Guttmann, "Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy," J. Magn. Reson. Imag., vol. 15, pp. 203-209, 2002. (Pubitemid 34112912)
-
(2002)
Journal of Magnetic Resonance Imaging
, vol.15
, Issue.2
, pp. 203-209
-
-
Wei, X.1
Warfield, S.K.2
Zou, K.H.3
Wu, Y.4
Li, X.5
Guimond, A.6
Mugler III, J.P.7
Benson, R.R.8
Wolfson, L.9
Weiner, H.L.10
Guttmann, C.R.G.11
-
7
-
-
17144426115
-
Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI
-
2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano
-
G. Dugas-Phocion,M. Ballester, G.Malandain, N. Ayache, C. Lebrun, S. Chanalet, and C. Bensa, "Hierarchical segmentation ofmultiple sclerosis lesions in multi-sequence MRI," Proc. ISBI, pp. 157-160, 2004. (Pubitemid 40513899)
-
(2004)
2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano
, vol.1
, pp. 157-160
-
-
Dugas-Phocion, G.1
Gonzalez, M.A.2
Lebrun, C.3
Chanalet, S.4
Bensa, C.5
Malandain, G.6
Ayache, N.7
-
8
-
-
0036826508
-
Automaticòpipelineó analysis of 3D MRI data for clinical trials: Application to multiple sclerosis
-
A. Zijdenbos, R. Forghani, and A. Evans, "Automaticò pipelineó analysis of 3D MRI data for clinical trials: Application to multiple sclerosis," IEEE Trans. Med. Imaging, vol. 21, pp. 1280-1291, 2002.
-
(2002)
IEEE Trans. Med. Imaging
, vol.21
, pp. 1280-1291
-
-
Zijdenbos, A.1
Forghani, R.2
Evans, A.3
-
9
-
-
79958012408
-
Spatial decision forests for MS lesion segmentation in multichannel MR images
-
E.Geremia,H.M.Bjoern, O. Clatz, E. Konukoglu,A.Criminisi, and N. Ayache, "Spatial decision forests for MS lesion segmentation in multichannel MR images," Proc. MICCAI, pp. 111-118, 2010.
-
(2010)
Proc. MICCAI
, pp. 111-118
-
-
Geremia, E.1
Bjoern, H.M.2
Clatz, O.3
Konukoglu, E.4
Criminisi, A.5
Ayache, N.6
-
10
-
-
0142192295
-
Conditional fandom fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira, "Conditional fandom fields: Probabilistic models for segmenting and labeling sequence data," in Proc. 18th Int. Conf. Mach. Learn., 2001, pp. 282-289.
-
(2001)
Proc. 18th Int. Conf. Mach. Learn.
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
13
-
-
5044223520
-
Multiscale conditional random fields for image labeling
-
X. He, R. Zemel, and M. Carreira-Perpinan, "Multiscale conditional random fields for image labeling," Proc. IEEE Comput. Vis. Pattern Recognit. Conf., pp. 695-702, 2004.
-
(2004)
Proc. IEEE Comput. Vis. Pattern Recognit. Conf.
, pp. 695-702
-
-
He, X.1
Zemel, R.2
Carreira-Perpinan, M.3
-
14
-
-
17644421120
-
Sign detection in natural images with conditional random fields
-
Machine Learning for Signal Processing XIV - Proceedings of 2004 IEEE Signal Processing Society Workshop
-
J. Weinman, A. Hanson, and A. McCallum, "Sign detection in natural images with conditional random fields," in IEEE Int. Workshop Mach. Learn. Signal Process., 2004, pp. 549-558. (Pubitemid 40557221)
-
(2004)
Machine Learning for Signal Processing XIV - Proceedings of the 2004 IEEE Signal Processing Society Workshop
, pp. 549-558
-
-
Weinman, J.1
Hanson, A.2
McCallum, A.3
-
15
-
-
84880887089
-
Image modeling using tree structured conditional random fields
-
P. Awasthi, A. Gagrani, and B. Ravindran, "Image modeling using tree structured conditional random fields," in Proc. Int. Joint Conf. Artif. Intell., 2007, pp. 2054-2059.
-
(2007)
Proc. Int. Joint Conf. Artif. Intell.
, pp. 2054-2059
-
-
Awasthi, P.1
Gagrani, A.2
Ravindran, B.3
-
16
-
-
58849150453
-
Segmenting brain tumors using pseudo-conditional random fields
-
C. Lee, S. Wang, A. Murtha, M. Brown, and R. Greiner, "Segmenting brain tumors using pseudo-conditional random fields," Proc. MICCAI, pp. 359-366, 2008.
-
(2008)
Proc. MICCAI
, pp. 359-366
-
-
Lee, C.1
Wang, S.2
Murtha, A.3
Brown, M.4
Greiner, R.5
-
17
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
-
S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, pp. 721-741, 1984. (Pubitemid 15453722)
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.PAMI-6
, Issue.6
, pp. 721-741
-
-
Geman Stuart1
Geman Donald2
-
18
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
J. Besag, "On the statistical analysis of dirty pictures," J. R. Stat. Soc., vol. 6, pp. 259-302, 1986.
-
(1986)
J. R. Stat. Soc.
, vol.6
, pp. 259-302
-
-
Besag, J.1
-
21
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
-
A. Ng and M. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes," Proc. NIPS, pp. 841-848, 2002.
-
(2002)
Proc. NIPS
, pp. 841-848
-
-
Ng, A.1
Jordan, M.2
-
22
-
-
33646456481
-
Support vector random fields for spatial classification
-
C. Lee, R. Greiner, and M. Schmidt, "Support vector random fields for spatial classification," Proc. PKDD, pp. 121-132, 2005.
-
(2005)
Proc. PKDD
, pp. 121-132
-
-
Lee, C.1
Greiner, R.2
Schmidt, M.3
-
23
-
-
84861912480
-
Detection of gad-enhancing lesions in multiple sclerosis using conditional random fields
-
Z. Karimaghaloo, M. Shah, S. Francis, D. L. Arnold, D. L. Collins, and T. Arbel, "Detection of gad-enhancing lesions in multiple sclerosis using conditional random fields," Proc. MICCAI, pp. 41-48, 2010.
-
(2010)
Proc. MICCAI
, pp. 41-48
-
-
Karimaghaloo, Z.1
Shah, M.2
Francis, S.3
Arnold, D.L.4
Collins, D.L.5
Arbel, T.6
-
24
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
DOI 10.1162/15324430152748236
-
M. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
25
-
-
0003922190
-
-
New York: Wiley Interscience ch. 3
-
R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New York: Wiley Interscience, 2001, ch. 3.
-
(2001)
Pattern Classification, 2nd Ed.
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
26
-
-
65549089797
-
Multi-scale vessel enhancement filtering
-
A. Frangi, W. Niessen, K. L. Vincken, and M. A. Viergever, "Multi-scale vessel enhancement filtering," Proc. MICCAI, pp. 130-137, 1998.
-
(1998)
Proc. MICCAI
, pp. 130-137
-
-
Frangi, A.1
Niessen, W.2
Vincken, K.L.3
Viergever, M.A.4
-
27
-
-
33745824267
-
TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
-
DOI 10.1007/11744023-1, Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Proceedings
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi, "Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation," Proc. ECCV, pp. 1-15, 2006. (Pubitemid 44029764)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3951
, pp. 1-15
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
28
-
-
56749103990
-
Learning CRFs using graph cuts
-
M. Szummer, P. Kohli, and D. Hoiem, "Learning CRFs using graph cuts," Proc. ECCV, vol. 5303, pp. 582-595, 2008.
-
(2008)
Proc. ECCV
, vol.5303
, pp. 582-595
-
-
Szummer, M.1
Kohli, P.2
Hoiem, D.3
-
29
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
DOI 10.1109/34.969114
-
Y. Boykov, O. Veksler, and R. Zabih, "Efficient approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001. (Pubitemid 33137959)
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
31
-
-
34547987363
-
Piecewise pseudo-likelihood for efficient training of conditional random fields
-
C. Sutton and A.McCallum, "Piecewise pseudo-likelihood for efficient training of conditional random fields," ICML, pp. 863-870, 2007.
-
(2007)
ICML
, pp. 863-870
-
-
Sutton, C.1
Mccallum, A.2
-
32
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
Sep.
-
Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE Trans. Pattern Anal.Mach. Learn., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
-
(2004)
IEEE Trans. Pattern Anal.Mach. Learn.
, vol.26
, Issue.9
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
33
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
K. Murphy, Y. Weiss, and M. Jordan, "Loopy belief propagation for approximate inference: An empirical study," Proc. Uncertainty AI, pp. 467-475, 1999.
-
(1999)
Proc. Uncertainty AI
, pp. 467-475
-
-
Murphy, K.1
Weiss, Y.2
Jordan, M.3
-
34
-
-
0000388721
-
Generalized belief propagation
-
J. Yedidia, W. Freeman, and Y. Weiss, "Generalized belief propagation," Proc. NIPS, vol. 13, pp. 689-695, 2000.
-
(2000)
Proc. NIPS
, vol.13
, pp. 689-695
-
-
Yedidia, J.1
Freeman, W.2
Weiss, Y.3
-
35
-
-
33750129298
-
Convergent tree-reweighted message passing for energy minimization
-
DOI 10.1109/TPAMI.2006.200
-
V. Kolmogorov, "Convergent tree-reweighted message passing for energy minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1568-1583, Oct. 2006. (Pubitemid 46405078)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.10
, pp. 1568-1583
-
-
Kolmogorov, V.1
-
36
-
-
0028287162
-
Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
-
D. Collins, P. Neelin, T. Peters, and A. Evans, "Automatic 3D intersubject registration of MR volumetric data in standardised Talairach space," Comp. Assist. Tomogr., vol. 18, pp. 192-205, 1994. (Pubitemid 24100002)
-
(1994)
Journal of Computer Assisted Tomography
, vol.18
, Issue.2
, pp. 192-205
-
-
Collins, D.L.1
Neelin, P.2
Peters, T.M.3
Evans, A.C.4
-
37
-
-
0034026246
-
2 measurements using MRI
-
DOI 10.1002/(SICI)1522-2594(200004)43: 4<589::AID-MRM14>3.0.CO;2-2
-
J. Sled and B. Pike, "Correction for b(1) and b(0) variations in quantitative T2 measurements using MRI," Mag. Reson. Med., vol. 43, pp. 589-593, 2000. (Pubitemid 30191083)
-
(2000)
Magnetic Resonance in Medicine
, vol.43
, Issue.4
, pp. 589-593
-
-
Sled, J.G.1
Pike, G.B.2
-
38
-
-
0344374438
-
On standardizing the MR image intensity scale
-
L. Nyul and J. Udupa, "On standardizing the MR image intensity scale," Comp. Assist. Tomogr., vol. 42, pp. 1072-1081, 1999.
-
(1999)
Comp. Assist. Tomogr.
, vol.42
, pp. 1072-1081
-
-
Nyul, L.1
Udupa, J.2
-
39
-
-
0036828879
-
Fast robust automated brain extraction
-
DOI 10.1002/hbm.10062
-
S. Smith, "Fast robust automated brain extraction," Hum. BrainMapp., vol. 17, pp. 143-155, 2002. (Pubitemid 35253488)
-
(2002)
Human Brain Mapping
, vol.17
, Issue.3
, pp. 143-155
-
-
Smith, S.M.1
-
40
-
-
0010581323
-
A probabilistic atlas and reference system for the human brain
-
J. Mazziotta et al., "A probabilistic atlas and reference system for the human brain," Philos. Trans. R. Soc., vol. 356, pp. 1293-1322, 2001.
-
(2001)
Philos. Trans. R. Soc.
, vol.356
, pp. 1293-1322
-
-
Mazziotta, J.1
-
41
-
-
0030493826
-
A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables
-
T. Coleman and Y. Li, "A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables," Journal on Optimization, vol. 6, pp. 1040-1058, 1996.
-
(1996)
Journal on Optimization
, vol.6
, pp. 1040-1058
-
-
Coleman, T.1
Li, Y.2
-
42
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon, "Individual comparisons by ranking methods," Biometrics, pp. 80-83, 1945.
-
(1945)
Biometrics
, pp. 80-83
-
-
Wilcoxon, F.1
-
44
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," J. Mach. Learn. Res., pp. 1453-1484, 2005.
-
(2005)
J. Mach. Learn. Res.
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
|