-
1
-
-
33750262367
-
Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation
-
Larsen, R, Nielsen, M, Sporring, J, eds, MICCAI 2006, Springer, Heidelberg
-
Corso, J.J., Sharon, E., Yuille, A.L.: Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 790-798. Springer, Heidelberg (2006)
-
(2006)
LNCS
, vol.4191
, pp. 790-798
-
-
Corso, J.J.1
Sharon, E.2
Yuille, A.L.3
-
2
-
-
0345686705
-
Diagonalized nearest neighbor pattern matching for brain tumor segmentation
-
Ellis, R.E, Peters, T.M, eds, MICCAI 2003, Springer, Heidelberg
-
Gering, D.T.: Diagonalized nearest neighbor pattern matching for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 670-677. Springer, Heidelberg (2003)
-
(2003)
LNCS
, vol.2879
, pp. 670-677
-
-
Gering, D.T.1
-
3
-
-
43049179622
-
Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification
-
Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification. IEEE Transactions on Medical Imaging 27(5), 629-640 (2008)
-
(2008)
IEEE Transactions on Medical Imaging
, vol.27
, Issue.5
, pp. 629-640
-
-
Corso, J.J.1
Sharon, E.2
Dube, S.3
El-Saden, S.4
Sinha, U.5
Yuille, A.6
-
5
-
-
13844281110
-
A system for brain tumor volume estimation via mr imaging and fuzzy connectedness
-
Liu, J., Udupa, J.K., Odhner, D., Hackney, D., Moonis, G.: A system for brain tumor volume estimation via mr imaging and fuzzy connectedness. Computational Medical Imaging and Graphics 29(1), 21-34 (2005)
-
(2005)
Computational Medical Imaging and Graphics
, vol.29
, Issue.1
, pp. 21-34
-
-
Liu, J.1
Udupa, J.K.2
Odhner, D.3
Hackney, D.4
Moonis, G.5
-
6
-
-
58849147185
-
-
Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: A 3D variational brain tumor segmentation using a high dimensional feature set. In: MMBIA (2007)
-
Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: A 3D variational brain tumor segmentation using a high dimensional feature set. In: MMBIA (2007)
-
-
-
-
7
-
-
0002714543
-
Making large-scale svm learning practical
-
Scholkopf, B, Bulges, C, Smola, A, eds, MIT Press, Cambridge
-
Joachims, T.: Making large-scale svm learning practical. In: Scholkopf, B., Bulges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
8
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
-
Ng, A., Jordan, M.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: NIPS, vol. 14 (2002)
-
(2002)
NIPS
, vol.14
-
-
Ng, A.1
Jordan, M.2
-
10
-
-
58849151467
-
-
Lafferty, J., Pereira, F., McCallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
-
Lafferty, J., Pereira, F., McCallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
-
-
-
-
11
-
-
33646456481
-
-
Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), 3721, pp. 121-132. Springer, Heidelberg (2005)
-
Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 121-132. Springer, Heidelberg (2005)
-
-
-
-
12
-
-
84864032258
-
Learning to model spatial dependency: Semi-supervised discriminative random fields
-
Lee, C.H., Wang, S., Jiao, F., Schuurmans, D., Greiner, R.: Learning to model spatial dependency: Semi-supervised discriminative random fields. In: NIPS, vol. 19 (2007)
-
(2007)
NIPS
, vol.19
-
-
Lee, C.H.1
Wang, S.2
Jiao, F.3
Schuurmans, D.4
Greiner, R.5
-
13
-
-
58849146318
-
-
Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2003)
-
Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2003)
-
-
-
-
14
-
-
33646553034
-
Exploiting inference for approximate parameter learning in discriminative fields: An empirical study
-
Rangarajan, A, Vemuri, B.C, Yuille, A.L, eds, EMMCVPR 2005, Springer, Heidelberg
-
Kumar, S., August, J., Hebert, M.: Exploiting inference for approximate parameter learning in discriminative fields: An empirical study. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 153-168. Springer, Heidelberg (2005)
-
(2005)
LNCS
, vol.3757
, pp. 153-168
-
-
Kumar, S.1
August, J.2
Hebert, M.3
-
15
-
-
33750334100
-
-
Lee, C.H., Greiner, R., Zaiane, O.R.: Efficient spatial classification using decoupled conditional random fields. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), 4213, pp. 272-283. Springer, Heidelberg (2006)
-
Lee, C.H., Greiner, R., Zaiane, O.R.: Efficient spatial classification using decoupled conditional random fields. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 272-283. Springer, Heidelberg (2006)
-
-
-
-
16
-
-
0033283778
-
Fast approximate energy minimization via graph cuts
-
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: ICCV, pp. 377-384 (1999)
-
(1999)
ICCV
, pp. 377-384
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
18
-
-
22944435196
-
Kernel based method for segmentation and modeling of magnetic resonance images
-
Lemaître, C, Reyes, C.A, González, J.A, eds, IBERAMIA 2004, Springer, Heidelberg
-
Garcia, C., Moreno, J.: Kernel based method for segmentation and modeling of magnetic resonance images. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 636-645. Springer, Heidelberg (2004)
-
(2004)
LNCS (LNAI
, vol.3315
, pp. 636-645
-
-
Garcia, C.1
Moreno, J.2
-
19
-
-
24944435111
-
Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
-
Zhang, J., Ma, K., Er, M., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: Int. Workshop on Advanced Image Technology, pp. 207-211 (2004)
-
(2004)
Int. Workshop on Advanced Image Technology
, pp. 207-211
-
-
Zhang, J.1
Ma, K.2
Er, M.3
Chong, V.4
-
20
-
-
0345255151
-
Gibbs prior models, marching cubes, and deformable models: A hybrid framework for 3d medical image segmentation
-
Ellis, R.E, Peters, T.M, eds, MICCAI 2003, Springer, Heidelberg
-
Chen, T., Metaxas, D.N.: Gibbs prior models, marching cubes, and deformable models: A hybrid framework for 3d medical image segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 703-710. Springer, Heidelberg (2003)
-
(2003)
LNCS
, vol.2879
, pp. 703-710
-
-
Chen, T.1
Metaxas, D.N.2
-
21
-
-
0035140334
-
Automated segmentation of MR images of brain tumors
-
Kaus, M., Warfield, S., Nabavi, A., Black, P., Jolesz, F., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218, 586-591 (2001)
-
(2001)
Radiology
, vol.218
, pp. 586-591
-
-
Kaus, M.1
Warfield, S.2
Nabavi, A.3
Black, P.4
Jolesz, F.5
Kikinis, R.6
-
22
-
-
58849145303
-
-
http://www.cs.ualberta.ca/~btap/research/pcrf/ (2008)
-
(2008)
-
-
|