메뉴 건너뛰기




Volumn 5241 LNCS, Issue PART 1, 2008, Pages 359-366

Segmenting brain tumors using pseudo-conditional random fields

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN CANCER; BRAIN TUMOR SEGMENTATION; BRAIN TUMORS; CLASSIFICATION DECISION; CONDITIONAL RANDOM FIELD; DISCRIMINATIVE CLASSIFIERS; LOGISTIC REGRESSIONS; PERFORMANCE IMPROVEMENTS; RANDOM FIELDS; SPATIAL CONSTRAINTS;

EID: 58849150453     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-85988-8_43     Document Type: Conference Paper
Times cited : (91)

References (22)
  • 1
    • 33750262367 scopus 로고    scopus 로고
    • Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation
    • Larsen, R, Nielsen, M, Sporring, J, eds, MICCAI 2006, Springer, Heidelberg
    • Corso, J.J., Sharon, E., Yuille, A.L.: Multilevel segmentation and integrated bayesian model classification with an application to brain tumor segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 790-798. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.4191 , pp. 790-798
    • Corso, J.J.1    Sharon, E.2    Yuille, A.L.3
  • 2
    • 0345686705 scopus 로고    scopus 로고
    • Diagonalized nearest neighbor pattern matching for brain tumor segmentation
    • Ellis, R.E, Peters, T.M, eds, MICCAI 2003, Springer, Heidelberg
    • Gering, D.T.: Diagonalized nearest neighbor pattern matching for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 670-677. Springer, Heidelberg (2003)
    • (2003) LNCS , vol.2879 , pp. 670-677
    • Gering, D.T.1
  • 6
    • 58849147185 scopus 로고    scopus 로고
    • Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: A 3D variational brain tumor segmentation using a high dimensional feature set. In: MMBIA (2007)
    • Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: A 3D variational brain tumor segmentation using a high dimensional feature set. In: MMBIA (2007)
  • 7
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • Scholkopf, B, Bulges, C, Smola, A, eds, MIT Press, Cambridge
    • Joachims, T.: Making large-scale svm learning practical. In: Scholkopf, B., Bulges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 8
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • Ng, A., Jordan, M.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In: NIPS, vol. 14 (2002)
    • (2002) NIPS , vol.14
    • Ng, A.1    Jordan, M.2
  • 10
    • 58849151467 scopus 로고    scopus 로고
    • Lafferty, J., Pereira, F., McCallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
    • Lafferty, J., Pereira, F., McCallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
  • 11
    • 33646456481 scopus 로고    scopus 로고
    • Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), 3721, pp. 121-132. Springer, Heidelberg (2005)
    • Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 121-132. Springer, Heidelberg (2005)
  • 12
    • 84864032258 scopus 로고    scopus 로고
    • Learning to model spatial dependency: Semi-supervised discriminative random fields
    • Lee, C.H., Wang, S., Jiao, F., Schuurmans, D., Greiner, R.: Learning to model spatial dependency: Semi-supervised discriminative random fields. In: NIPS, vol. 19 (2007)
    • (2007) NIPS , vol.19
    • Lee, C.H.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, R.5
  • 13
    • 58849146318 scopus 로고    scopus 로고
    • Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2003)
    • Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2003)
  • 14
    • 33646553034 scopus 로고    scopus 로고
    • Exploiting inference for approximate parameter learning in discriminative fields: An empirical study
    • Rangarajan, A, Vemuri, B.C, Yuille, A.L, eds, EMMCVPR 2005, Springer, Heidelberg
    • Kumar, S., August, J., Hebert, M.: Exploiting inference for approximate parameter learning in discriminative fields: An empirical study. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 153-168. Springer, Heidelberg (2005)
    • (2005) LNCS , vol.3757 , pp. 153-168
    • Kumar, S.1    August, J.2    Hebert, M.3
  • 15
    • 33750334100 scopus 로고    scopus 로고
    • Lee, C.H., Greiner, R., Zaiane, O.R.: Efficient spatial classification using decoupled conditional random fields. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), 4213, pp. 272-283. Springer, Heidelberg (2006)
    • Lee, C.H., Greiner, R., Zaiane, O.R.: Efficient spatial classification using decoupled conditional random fields. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 272-283. Springer, Heidelberg (2006)
  • 16
    • 0033283778 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: ICCV, pp. 377-384 (1999)
    • (1999) ICCV , pp. 377-384
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 18
    • 22944435196 scopus 로고    scopus 로고
    • Kernel based method for segmentation and modeling of magnetic resonance images
    • Lemaître, C, Reyes, C.A, González, J.A, eds, IBERAMIA 2004, Springer, Heidelberg
    • Garcia, C., Moreno, J.: Kernel based method for segmentation and modeling of magnetic resonance images. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 636-645. Springer, Heidelberg (2004)
    • (2004) LNCS (LNAI , vol.3315 , pp. 636-645
    • Garcia, C.1    Moreno, J.2
  • 19
    • 24944435111 scopus 로고    scopus 로고
    • Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
    • Zhang, J., Ma, K., Er, M., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: Int. Workshop on Advanced Image Technology, pp. 207-211 (2004)
    • (2004) Int. Workshop on Advanced Image Technology , pp. 207-211
    • Zhang, J.1    Ma, K.2    Er, M.3    Chong, V.4
  • 20
    • 0345255151 scopus 로고    scopus 로고
    • Gibbs prior models, marching cubes, and deformable models: A hybrid framework for 3d medical image segmentation
    • Ellis, R.E, Peters, T.M, eds, MICCAI 2003, Springer, Heidelberg
    • Chen, T., Metaxas, D.N.: Gibbs prior models, marching cubes, and deformable models: A hybrid framework for 3d medical image segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 703-710. Springer, Heidelberg (2003)
    • (2003) LNCS , vol.2879 , pp. 703-710
    • Chen, T.1    Metaxas, D.N.2
  • 22
    • 58849145303 scopus 로고    scopus 로고
    • http://www.cs.ualberta.ca/~btap/research/pcrf/ (2008)
    • (2008)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.