메뉴 건너뛰기




Volumn 6361 LNCS, Issue PART 1, 2010, Pages 111-118

Spatial decision forests for MS lesion segmentation in multi-channel MR images

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC SEGMENTATIONS; DATA SETS; DECISION FOREST; MR IMAGES; MR INTENSITY; MULTI-CHANNEL; MULTIPLE SCLEROSIS LESIONS; PROBABILISTIC CLASSIFICATION; QUANTITATIVE EVALUATION; SPATIAL PRIORS; STATE OF THE ART; SYMMETRY FEATURES;

EID: 79958012408     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15705-9_14     Document Type: Conference Paper
Times cited : (86)

References (19)
  • 4
    • 70349205727 scopus 로고    scopus 로고
    • Multiple sclerosis lesion detection using constrained GMM and curve evolution
    • Freifeld, O., Greenspan, H., Goldberger, J.: Multiple sclerosis lesion detection using constrained GMM and curve evolution. J. of Biomed. Imaging 2009, 1-13 (2009)
    • (2009) J. of Biomed. Imaging 2009 , pp. 1-13
    • Freifeld, O.1    Greenspan, H.2    Goldberger, J.3
  • 5
    • 33845586711 scopus 로고    scopus 로고
    • An integrated segmentation and classification approach applied tomultiple sclerosis analysis
    • IEEE, Los Alamitos
    • Akselrod-Ballin, A., Galun, M., Basri, R., Brandt, A., Gomori, M.J., Filippi, M., Valsasina, P.: An integrated segmentation and classification approach applied tomultiple sclerosis analysis. In: CVPR 2006, pp. 1122-1129. IEEE, Los Alamitos (2006)
    • (2006) CVPR 2006 , pp. 1122-1129
    • Akselrod-Ballin, A.1    Galun, M.2    Basri, R.3    Brandt, A.4    Gomori, M.J.5    Filippi, M.6    Valsasina, P.7
  • 6
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Petrich, W., Hamprecht, F.A.: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10, 213 (2009)
    • (2009) BMC Bioinformatics , vol.10 , pp. 213
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3    Himmelreich, U.4    Petrich, W.5    Hamprecht, F.A.6
  • 7
    • 54249156699 scopus 로고    scopus 로고
    • Segmentation of SBFSEMvolume data of neural tissue by hierarchical classification
    • Rigoll, G. (ed.) DAGM 2008. Springer, Heidelberg
    • Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.A.: Segmentation of SBFSEMvolume data of neural tissue by hierarchical classification. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 142-152. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5096 , pp. 142-152
    • Andres, B.1    Köthe, U.2    Helmstaedter, M.3    Denk, W.4    Hamprecht, F.A.5
  • 8
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comp. Vision 81(1), 2-23 (2009)
    • (2009) Int. J. Comp. Vision , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.M.2    Rother, C.3    Criminisi, A.4
  • 9
    • 79551686618 scopus 로고    scopus 로고
    • Discriminative, semantic segmentation of brain tissue in MR images
    • Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. Springer, Heidelberg
    • Yi, Z., Criminisi, A., Shotton, J., Blake, A.: Discriminative, semantic segmentation of brain tissue in MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 558-565. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5762 , pp. 558-565
    • Yi, Z.1    Criminisi, A.2    Shotton, J.3    Blake, A.4
  • 10
    • 68849096223 scopus 로고    scopus 로고
    • Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography
    • Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. Springer, Heidelberg
    • Lempitsky, V.S., Verhoek, M., Noble, J.A., Blake, A.: Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 447-456. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5528 , pp. 447-456
    • Lempitsky, V.S.1    Verhoek, M.2    Noble, J.A.3    Blake, A.4
  • 13
    • 84958175097 scopus 로고    scopus 로고
    • Maximum likelihood estimation of the bias field in MR brain images: Investigating different modelings of the imaging process
    • Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. Springer, Heidelberg
    • Prima, S., Ayache, N., Barrick, T., Roberts, N.: Maximum likelihood estimation of the bias field in MR brain images: Investigating different modelings of the imaging process. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 811-819. Springer, Heidelberg (2001)
    • (2001) LNCS , vol.2208 , pp. 811-819
    • Prima, S.1    Ayache, N.2    Barrick, T.3    Roberts, N.4
  • 15
    • 0036462556 scopus 로고    scopus 로고
    • Computation of the mid-sagittal plane in 3d brain images
    • Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3d brain images. IEEE Trans. Med. Imaging 21(2), 122-138 (2002)
    • (2002) IEEE Trans. Med. Imaging , vol.21 , Issue.2 , pp. 122-138
    • Prima, S.1    Ourselin, S.2    Ayache, N.3
  • 17
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7), 1545-1588 (1997)
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.