메뉴 건너뛰기




Volumn 35, Issue 2, 2012, Pages 131-150

Reverse engineering the neural networks for rule extraction in classification problems

Author keywords

Classification; Neural networks; Pedagogical; Pruning; Reverse engineering; Rule extraction

Indexed keywords

BLACK BOXES; CLASSIFICATION ACCURACY; CONTINUOUS MODE; DATA SETS; ENGINEERING TECHNIQUES; INPUT NEURONS; MIXED MODE; PEDAGOGICAL; PEDAGOGICAL APPROACH; PRUNING; REAL DATA SETS; RULE EXTRACTION; RULE EXTRACTION ALGORITHMS; RULE EXTRACTION METHOD; SET OF RULES; TRAINED NEURAL NETWORKS;

EID: 84861794233     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-011-9207-8     Document Type: Article
Times cited : (165)

References (43)
  • 2
    • 34250314887 scopus 로고    scopus 로고
    • Decision-tree instance-space decomposition with grouped gain-ratio
    • DOI 10.1016/j.ins.2007.01.016, PII S0020025507000540
    • Cohen S, Rokach L, Maimon O (2007) Decision-tree instance-space decomposition with grouped gainratio. Inf Sci 177(17):3592-3612 (Pubitemid 46920524)
    • (2007) Information Sciences , vol.177 , Issue.17 , pp. 3592-3612
    • Cohen, S.1    Rokach, L.2    Maimon, O.3
  • 3
    • 27944494029 scopus 로고    scopus 로고
    • An extension of the nave Bayesian classifier
    • Yager RR (2006) An extension of the nave Bayesian classifier. Inf Sci 176(5):577-588
    • (2006) Inf Sci , vol.176 , Issue.5 , pp. 577-588
    • Yager, R.R.1
  • 4
    • 31144451061 scopus 로고    scopus 로고
    • Discovering trends in large datasets using neural networks
    • DOI 10.1007/s10489-006-6929-9
    • Kaikhah K, Doddmeti S (2006) Discovering trends in large datasets using neural network. Appl Intel 29:51-60 (Pubitemid 43130241)
    • (2006) Applied Intelligence , vol.24 , Issue.1 , pp. 51-60
    • Kaikhah, K.1    Doddameti, S.2
  • 6
    • 33748438998 scopus 로고    scopus 로고
    • Extraction of similarity based fuzzy rules from artificial neural networks
    • DOI 10.1016/j.ijar.2006.04.003, PII S0888613X06000338
    • Mantas CJ, Puche JM,Mantas JM (2006) Extraction of similarity based fuzzy rules from artificial neural networks. Int J Approx Reason 43:202-221 (Pubitemid 44345154)
    • (2006) International Journal of Approximate Reasoning , vol.43 , Issue.2 , pp. 202-221
    • Mantas, C.J.1    Puche, J.M.2    Mantas, J.M.3
  • 8
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Tsukimoto H (2000) Extracting rules from trained neural networks. IEEE Trans Neural Netw 11(2):377-389
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.2 , pp. 377-389
    • Tsukimoto, H.1
  • 9
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • Jacobson H (2005) Rule extraction from recurrent neural networks: a taxonomy and review. Neural Comput 17(6):1223-1263
    • (2005) Neural Comput , vol.17 , Issue.6 , pp. 1223-1263
    • Jacobson, H.1
  • 10
    • 67349104672 scopus 로고    scopus 로고
    • Generating rules with predicates, terms and variables from the pruned neural networks
    • Nayak R (2009) Generating rules with predicates, terms and variables from the pruned neural networks. Neural Netw 22:405-414
    • (2009) Neural Netw , vol.22 , pp. 405-414
    • Nayak, R.1
  • 11
    • 33750108219 scopus 로고    scopus 로고
    • Rule extraction as a formal method for the verification and validation of neural networks
    • DOI 10.1109/IJCNN.2005.1556388, 1556388, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • Taylor BJ, Darrah MA (2005) Rule extraction as a formal method for the verification and validation of neural networks. IEEE Int Joint Conf Neural Netw 5:2915-2920 (Pubitemid 44591664)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.5 , pp. 2915-2920
    • Taylor, B.J.1    Darrah, M.A.2
  • 12
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • PII S1045922798061839
    • Tickle AB, Andrews R, Golea M, Diederich J (1998) The truth will come to light: directions and challenges in extracting the knowledge embeddedwithin trained artificial neural networks. IEEE TransNeural Netw 6:1057-1068 (Pubitemid 128742391)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 13
    • 85025505893 scopus 로고
    • Generalization performance of overtrained backpropagation networks
    • Hlomeida LB, Wellekens CJ (eds)
    • Chauvin Y (1990) Generalization performance of overtrained backpropagation networks. In: Hlomeida LB, Wellekens CJ (eds) Proceedings of neural networks euroship workshop, pp 46-55
    • (1990) Proceedings of Neural Networks Euroship Workshop , pp. 46-55
    • Chauvin, Y.1
  • 14
    • 0027662338 scopus 로고
    • Pruning algorithm- A survey
    • Reed R (1993) Pruning algorithm-a survey. IEEE Trans Neural Netw 4:740-747
    • (1993) IEEE Trans Neural Netw , vol.4 , pp. 740-747
    • Reed, R.1
  • 16
    • 50849098868 scopus 로고    scopus 로고
    • A note on knowledge discovery using neural networks and its application to credit card screening
    • Setiono R, Baesens B, Mues C (2008) A note on knowledge discovery using neural networks and its application to credit card screening. Eur J Oper Res 192(1):326-332
    • (2008) Eur J Oper Res , vol.192 , Issue.1 , pp. 326-332
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 20
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Engelbrecht AP (2001) A new pruning heuristic based on variance analysis of sensitivity information. IEEE Trans Neural Netw 12(6):1386-1399
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 21
    • 65149084176 scopus 로고    scopus 로고
    • Two phase construction of multilayer perceptrons using information theory
    • Xing H-J, Hu B-G (2009) Two phase construction of multilayer perceptrons using information theory. IEEE Trans Neural Netw 20(4):715-721
    • (2009) IEEE Trans Neural Netw , vol.20 , Issue.4 , pp. 715-721
    • Xing, H.-J.1    Hu, B.-G.2
  • 22
    • 0031142667 scopus 로고    scopus 로고
    • An iterative pruning algorithm for feedforward neural networks
    • Castellano G, Fanelli AM, Pelillo M (1997) An iterative pruning algorithm for feedforward neural networks. IEEE Trans Neural Netw 8(3):519-530
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.3 , pp. 519-530
    • Castellano, G.1    Fanelli, A.M.2    Pelillo, M.3
  • 23
    • 32544452874 scopus 로고    scopus 로고
    • Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure
    • DOI 10.1016/j.neucom.2005.04.010, PII S0925231205001852
    • Zeng X, Yeung DS (2006) Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure. Neurocomputing 69:825-837 (Pubitemid 43230385)
    • (2006) Neurocomputing , vol.69 , Issue.7-9 SPEC. ISS. , pp. 825-837
    • Zeng, X.1    Yeung, D.S.2
  • 24
    • 0025245266 scopus 로고
    • Reverse engineering and design recovery: A taxonomy
    • Chikofsky EJ, Cross JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw 7(1):13-17
    • (1990) IEEE Softw , vol.7 , Issue.1 , pp. 13-17
    • Chikofsky, E.J.1    Cross, J.H.2
  • 25
  • 26
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Setiono R, Liu H (1996) Symbolic representation of neural networks. IEEE Comput 29(3):71-77 (Pubitemid 126515072)
    • (1996) Computer , vol.29 , Issue.3 , pp. 71-77
    • Setiono, R.1    Liu, H.2
  • 27
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • Setiono R (1997) Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Comput 9(1):205-225 (Pubitemid 127622533)
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 205-225
    • Setiono, R.1
  • 29
    • 33644921465 scopus 로고    scopus 로고
    • Orthogonal Search-Based Rule Extraction (OSRE) for Trained Neural Networks: A Practical and Efficient Approach
    • DOI 10.1109/TNN.2005.863472
    • Etchells TA, Lisboa PJG (2006) Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach. IEEE Trans Knowl Data Eng 17(2):374-384 (Pubitemid 43380061)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 374-384
    • Etchells, T.A.1    Lisboa, P.J.G.2
  • 30
    • 40549122717 scopus 로고    scopus 로고
    • Recursive neural network rule extraction for data with mixed attributes
    • DOI 10.1109/TNN.2007.908641
    • Setiono R, Baesens B, Mues C (2008) Recursive neural network rule extraction for data with mixed attributes. IEEE Trans Knowl Data Eng 19(2):299-307 (Pubitemid 351359294)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.2 , pp. 299-307
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 31
    • 33845679519 scopus 로고    scopus 로고
    • Neural network explanation using inversion
    • DOI 10.1016/j.neunet.2006.07.005, PII S0893608006001730
    • Emad EW, Wunsch II DC (2007) Neural network explanation using inversion. Neural Netw 20:78-93 (Pubitemid 44960621)
    • (2007) Neural Networks , vol.20 , Issue.1 , pp. 78-93
    • Saad, E.W.1    Wunsch II, D.C.2
  • 32
    • 0029484103 scopus 로고    scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R, Diederich J, Tickle AB (1996) Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl Based Syst 8(6):373-389
    • (1996) Knowl Based Syst , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 33
    • 0342378106 scopus 로고    scopus 로고
    • Neurolinear: From neural networks to oblique decision rules
    • DOI 10.1016/S0925-2312(97)00038-6, PII S0925231297000386
    • Setiono R, Liu H (1997) Neurolinear: from neural networks to oblique decision rules. Neural Comput 17(1):1-24 (Pubitemid 27433442)
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 1-24
    • Setiono, R.1    Liu, H.2
  • 34
    • 84974737294 scopus 로고    scopus 로고
    • Handling continuous-valued attributes in decision tree with neural network modeling
    • Lecture notes in computer science
    • Kim D, Lee J (2000) Handling continuous-valued attributes in decision tree with neural network modeling. In: Proceedings of the 11th European conference on machine learning. Lecture notes in computer science, vol 1810, pp 211-219
    • (2000) Proceedings of the 11th European Conference on Machine Learning , vol.1810 , pp. 211-219
    • Kim, D.1    Lee, J.2
  • 35
    • 51049095878 scopus 로고    scopus 로고
    • Greedy rule generation from discrete data and its use in neural network rule extraction
    • Koichi O, Yoichi H, Gong T, Rudy S (2008) Greedy rule generation from discrete data and its use in neural network rule extraction. Neural Netw 21:1020-1028
    • (2008) Neural Netw , vol.21 , pp. 1020-1028
    • Koichi, O.1    Yoichi, H.2    Gong, T.3    Rudy, S.4
  • 38
    • 0003696226 scopus 로고
    • Extracting provably correct rules from artificial neural networks
    • Institut für informatik III, University of Bonn
    • Thrun SB (1993) Extracting provably correct rules from artificial neural networks. Technical Report IAI-TR-93-5, Institut für informatik III, University of Bonn
    • (1993) Technical Report IAI-TR-93-5
    • Thrun, S.B.1
  • 42
    • 33750967077 scopus 로고    scopus 로고
    • Extracting rules from multilayer perceptrons in classification problems: A clustering-based approach
    • DOI 10.1016/j.neucom.2005.12.127, PII S0925231206000403
    • Hruschka ER, Ebecken NFF (2006) Extracting rules from multilayer perceptrons in classification problems: a clustering-based approach. Neurocomputing 70:384-397 (Pubitemid 44739711)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 384-397
    • Hruschka, E.R.1    Ebecken, N.F.F.2
  • 43
    • 56349096960 scopus 로고    scopus 로고
    • Rule extraction from trained adaptive neural networks using artificial immune systems
    • Kahramanli H, Allahverdi N (2009) Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Syst Appl 36:1513-1522
    • (2009) Expert Syst Appl , vol.36 , pp. 1513-1522
    • Kahramanli, H.1    Allahverdi, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.