메뉴 건너뛰기




Volumn 17, Issue 2, 2006, Pages 374-384

Orthogonal Search-Based Rule Extraction (OSRE) for Trained Neural Networks: A Practical and Efficient Approach

Author keywords

Neura networks; Rule extraction

Indexed keywords

DECISION THEORY; FINITE DIFFERENCE METHOD; KNOWLEDGE BASED SYSTEMS; MATHEMATICAL MODELS; ONCOLOGY;

EID: 33644921465     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2005.863472     Document Type: Article
Times cited : (94)

References (22)
  • 1
    • 0036127092 scopus 로고    scopus 로고
    • "A review of evidence of health benefit from artificial neural networks in medical intervention"
    • Jan
    • P. J. G. Lisboa, "A review of evidence of health benefit from artificial neural networks in medical intervention," Neural Networks, vol. 15, no. 1, pp. 11-39, Jan. 2002.
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 11-39
    • Lisboa, P.J.G.1
  • 2
    • 0003741337 scopus 로고
    • "RULENEG: Extracting rules from a trained ANN by stepwise negation"
    • Tech. Rep., QUT NRC
    • E. Pop, R. Hayward, and J. Diederich, "RULENEG: Extracting rules from a trained ANN by stepwise negation," Tech. Rep., QUT NRC, 1994.
    • (1994)
    • Pop, E.1    Hayward, R.2    Diederich, J.3
  • 4
    • 0030308689 scopus 로고    scopus 로고
    • "Three techniques for extracting rules from feedforward networks"
    • I. Taha and J. Ghosh, "Three techniques for extracting rules from feedforward networks," Intell. Eng. Syst. Through Artif. Neural Networks, vol. 6, pp. 23-28, 1996.
    • (1996) Intell. Eng. Syst. Through Artif. Neural Networks , vol.6 , pp. 23-28
    • Taha, I.1    Ghosh, J.2
  • 5
    • 0033742671 scopus 로고    scopus 로고
    • "Extracting rules from trained neural networks"
    • Mar
    • H. Tsukimoto, "Extracting rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 377-389, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.2 , pp. 377-389
    • Tsukimoto, H.1
  • 6
    • 0027678679 scopus 로고
    • "Extracting refined rules from knowledge-based neural networks"
    • Oct
    • G. G. Towell and J. W. Shavlik, "Extracting refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, no. 1, pp. 71-101, Oct. 1993.
    • (1993) Mach. Learn. , vol.13 , Issue.1 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 7
    • 0342378106 scopus 로고    scopus 로고
    • "Neurolinear: From neural networks to oblique decision rules"
    • R. Setione and H. Liu, "Neurolinear: From neural networks to oblique decision rules," Neurocomput., vol. 17, no. 1, pp. 1-24, 1997.
    • (1997) Neurocomput. , vol.17 , Issue.1 , pp. 1-24
    • Setione, R.1    Liu, H.2
  • 8
    • 0035127989 scopus 로고    scopus 로고
    • "Symbolic knowledge from trained neural networks: A sound approach"
    • A. S. Garcez d'Avila, K. Broda, and D. M. Gabbay, "Symbolic knowledge from trained neural networks: A sound approach," Artif. Intell., vol. 125, no. 1, pp. 155-207, 2001.
    • (2001) Artif. Intell. , vol.125 , Issue.1 , pp. 155-207
    • Garcez d'Avila, A.S.1    Broda, K.2    Gabbay, D.M.3
  • 9
    • 9244240796 scopus 로고    scopus 로고
    • "A general framework for learning rules from data"
    • Nov
    • B. Apolloni et al., "A general framework for learning rules from data," IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1333-1349, Nov. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.6 , pp. 1333-1349
    • Apolloni, B.1
  • 10
    • 23044508082 scopus 로고    scopus 로고
    • "Are artificial neural networks white boxes?"
    • Jul
    • E. Kolman and M. Margaliot, "Are artificial neural networks white boxes?," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 844-852, Jul. 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.4 , pp. 844-852
    • Kolman, E.1    Margaliot, M.2
  • 11
    • 9244242590 scopus 로고    scopus 로고
    • "Encoding nondeterministic fuzzy tree automa into recursive neural networks"
    • Nov
    • M. Gori and A. Petrosino, "Encoding nondeterministic fuzzy tree automa into recursive neural networks," IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1435-1449, Nov. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.6 , pp. 1435-1449
    • Gori, M.1    Petrosino, A.2
  • 12
    • 9244227617 scopus 로고    scopus 로고
    • "Heterogeneous fuzzy logic networks: Fundamentals and development studies"
    • Nov
    • W. Pedrycz, "Heterogeneous fuzzy logic networks: Fundamentals and development studies," IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1466-1481, Nov. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.6 , pp. 1466-1481
    • Pedrycz, W.1
  • 13
    • 13844298057 scopus 로고    scopus 로고
    • "Uncertainy of data, fuzzy membership functions, and multilayer perceptrons"
    • Jan
    • W. Duch, "Uncertainy of data, fuzzy membership functions, and multilayer perceptrons," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 10-23, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.1 , pp. 10-23
    • Duch, W.1
  • 14
    • 1242263791 scopus 로고    scopus 로고
    • "A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification"
    • Jan
    • D. Chakraborty and N. R. Pal, "A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 110-123, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 15
    • 0003539213 scopus 로고
    • "The MONK's Problems: A performance comparison of different learning algorithms"
    • Comp. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-91-197
    • S. Thrun et al., "The MONK's Problems: A performance comparison of different learning algorithms," Comp. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-91-197, 1991.
    • (1991)
    • Thrun, S.1
  • 16
    • 33644925215 scopus 로고    scopus 로고
    • Wisconsin Breast Cancer Database. [Online]. Available: ftp://ftp.ics.uci. edu/pub/machine-learning-databases/
    • Wisconsin Breast Cancer Database. [Online]. Available: ftp://ftp.ics.uci. edu/pub/machine-learning-databases/
  • 17
    • 33644892715 scopus 로고    scopus 로고
    • Derive 5.06 A Computer Algebra System
    • Texas Instruments, Inc., Houston, TX. [Online]. Available
    • (2002) Derive 5.06 A Computer Algebra System. Texas Instruments, Inc., Houston, TX. [Online]. Available: http://www.derive.com
    • (2002)
  • 18
    • 0034159928 scopus 로고    scopus 로고
    • "Generating concise and accurate classification rules for breast cancer diagnosis"
    • R. Setiono, "Generating concise and accurate classification rules for breast cancer diagnosis," Artif. Intell. Med., vol. 18, pp. 205-219, 2000.
    • (2000) Artif. Intell. Med. , vol.18 , pp. 205-219
    • Setiono, R.1
  • 19
    • 0342378106 scopus 로고    scopus 로고
    • "Neurolinear: From neural networks to oblique decision rules"
    • R. Setiono and H. Liu, "Neurolinear: From neural networks to oblique decision rules," Neurocomput., vol. 17, no. 1, pp. 1-24, 1997.
    • (1997) Neurocomput. , vol.17 , Issue.1 , pp. 1-24
    • Setiono, R.1    Liu, H.2
  • 20
    • 33644910834 scopus 로고    scopus 로고
    • "Private communication" unpublished
    • S. Cross, "Private communication," unpublished.
    • Cross, S.1
  • 21
    • 33644924820 scopus 로고    scopus 로고
    • Data mining analysis
    • AKM. [Online]. Available
    • AKM. Data mining analysis. [Online]. Available: http://www.auknomi.com/ webFiles/wisconsin-breast-cancer.pdf


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.