메뉴 건너뛰기




Volumn 21, Issue 7, 2008, Pages 1020-1028

Greedy rule generation from discrete data and its use in neural network rule extraction

Author keywords

Classification; Clustering; Discretization; Neural networks; Rule generation

Indexed keywords

ARTIFICIAL INTELLIGENCE; BOOLEAN FUNCTIONS; CLASSIFICATION (OF INFORMATION); COMPUTER NETWORKS; IMAGE CLASSIFICATION; SET THEORY; VEGETATION;

EID: 51049095878     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2008.01.003     Document Type: Article
Times cited : (50)

References (32)
  • 1
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • Baesens B., Setiono R., Mues C., and Vanthienen J. Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science 49 3 (2003) 312-329
    • (2003) Management Science , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 2
    • 51049118085 scopus 로고    scopus 로고
    • Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html
    • Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html
  • 3
    • 0042168792 scopus 로고    scopus 로고
    • A model for single and multiple knowledge based neural networks
    • Bologna G. A model for single and multiple knowledge based neural networks. Artificial Intelligence in Medicine 28 2 (2003) 141-163
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.2 , pp. 141-163
    • Bologna, G.1
  • 4
    • 0037084856 scopus 로고    scopus 로고
    • Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri)
    • Bradshaw C.J.A., Davis L.S., Purvis M., Zhou Q., and Benwell G.L. Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri). Ecological Modeling 148 2 (2002) 111-131
    • (2002) Ecological Modeling , vol.148 , Issue.2 , pp. 111-131
    • Bradshaw, C.J.A.1    Davis, L.S.2    Purvis, M.3    Zhou, Q.4    Benwell, G.L.5
  • 5
    • 1542576024 scopus 로고    scopus 로고
    • Biological data mining with neural networks: Implementation and application of a flexible decision tree extraction algorithm to genomic problem domains
    • Browne A., Hudson B.D., Whitely D.C., Ford M.G., and Picton P. Biological data mining with neural networks: Implementation and application of a flexible decision tree extraction algorithm to genomic problem domains. Neurocomputing 57 (2004) 275-293
    • (2004) Neurocomputing , vol.57 , pp. 275-293
    • Browne, A.1    Hudson, B.D.2    Whitely, D.C.3    Ford, M.G.4    Picton, P.5
  • 6
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Castro J.L., Mantas C.J., and Benitez J. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Transactions on Neural Networks 13 1 (2002) 101-116
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 101-116
    • Castro, J.L.1    Mantas, C.J.2    Benitez, J.3
  • 8
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • Duch W., Adamczak R., and Grabczekski K. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12 2 (2001) 277-306
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.2 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczekski, K.3
  • 9
    • 2442617148 scopus 로고    scopus 로고
    • Extracting rules from trained neural network using GA for managing E-business
    • Elalfi A.E., Haque R., and Elalami M.E. Extracting rules from trained neural network using GA for managing E-business. Applied Soft Computing 4 1 (2004) 65-77
    • (2004) Applied Soft Computing , vol.4 , Issue.1 , pp. 65-77
    • Elalfi, A.E.1    Haque, R.2    Elalami, M.E.3
  • 10
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 12
    • 51049123789 scopus 로고    scopus 로고
    • Fukumi, M., & Akamatsu, N. (1999). A new rule extraction method from neural networks. In Proceedings of IJCNN99 (pp. 1-5)
    • Fukumi, M., & Akamatsu, N. (1999). A new rule extraction method from neural networks. In Proceedings of IJCNN99 (pp. 1-5)
  • 13
    • 0036888743 scopus 로고    scopus 로고
    • Extract intelligible and fuzzy rules from neural networks
    • Huang S.H., and Xing H. Extract intelligible and fuzzy rules from neural networks. Fuzzy Sets and Systems 132 2 (2002) 233-243
    • (2002) Fuzzy Sets and Systems , vol.132 , Issue.2 , pp. 233-243
    • Huang, S.H.1    Xing, H.2
  • 14
    • 0034551785 scopus 로고    scopus 로고
    • Rule extraction by successive regularization
    • Ishikawa M. Rule extraction by successive regularization. Neural Networks 13 10 (2000) 1171-1183
    • (2000) Neural Networks , vol.13 , Issue.10 , pp. 1171-1183
    • Ishikawa, M.1
  • 15
    • 0033097962 scopus 로고    scopus 로고
    • A search technique for rule extraction from trained neural networks
    • Krishnan R., Sivakumar G., and Bhattacharya P. A search technique for rule extraction from trained neural networks. Pattern Recognition Letters 20 3 (1999) 273-280
    • (1999) Pattern Recognition Letters , vol.20 , Issue.3 , pp. 273-280
    • Krishnan, R.1    Sivakumar, G.2    Bhattacharya, P.3
  • 16
    • 0029503525 scopus 로고    scopus 로고
    • Liu, H., & Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes. In Proceedings of the 7th international conference on tools for artificial intelligence (pp. 388-391)
    • Liu, H., & Setiono, R. (1995). Chi2: Feature selection and discretization of numeric attributes. In Proceedings of the 7th international conference on tools for artificial intelligence (pp. 388-391)
  • 17
    • 0029529559 scopus 로고    scopus 로고
    • Liu, H., & Tan, S.T. (1995). X2R: A fast rule generator. In Proceedings of the 7th IEEE international conference on systems, Man and Cybernetics (pp. 631-635)
    • Liu, H., & Tan, S.T. (1995). X2R: A fast rule generator. In Proceedings of the 7th IEEE international conference on systems, Man and Cybernetics (pp. 631-635)
  • 18
    • 51049118746 scopus 로고    scopus 로고
    • Merz, C.J., & Murphy, P.M. (1996). UCI Repository of machine learning databases. Irvine, CA: Department of Information and Computer Science, University of California. Available from: http://www.ics.uci.edu/mlearn/mlrepository.html
    • Merz, C.J., & Murphy, P.M. (1996). UCI Repository of machine learning databases. Irvine, CA: Department of Information and Computer Science, University of California. Available from: http://www.ics.uci.edu/mlearn/mlrepository.html
  • 19
    • 51049111131 scopus 로고    scopus 로고
    • Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning AQ15 and its testing application to three medical domains. In Proceedings of the 5th national conference on AI (pp. 1041-1045)
    • Michalski, R.S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning AQ15 and its testing application to three medical domains. In Proceedings of the 5th national conference on AI (pp. 1041-1045)
  • 20
    • 0004255908 scopus 로고    scopus 로고
    • The Mc Graw-Hill Companies Inc, New York
    • Mitchell T. Machine learning (1997), The Mc Graw-Hill Companies Inc, New York
    • (1997) Machine learning
    • Mitchell, T.1
  • 22
    • 0036162464 scopus 로고    scopus 로고
    • Knowledge extraction using artificial neural networks: Application to radar identification
    • Remm J.-F., and Alexandre F. Knowledge extraction using artificial neural networks: Application to radar identification. Signal Processing 82 1 (2002) 117-120
    • (2002) Signal Processing , vol.82 , Issue.1 , pp. 117-120
    • Remm, J.-F.1    Alexandre, F.2
  • 23
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest R.L. Learning decision lists. Machine Learning 2 3 (1987) 229-246
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 24
    • 0030633575 scopus 로고
    • A penalty function approach for pruning feedforward neural networks
    • Setiono R. A penalty function approach for pruning feedforward neural networks. Neural Computation 9 1 (1995) 185-204
    • (1995) Neural Computation , vol.9 , Issue.1 , pp. 185-204
    • Setiono, R.1
  • 25
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Setiono R., and Liu H. Symbolic representation of neural networks. IEEE Computer 29 3 (1996) 71-77
    • (1996) IEEE Computer , vol.29 , Issue.3 , pp. 71-77
    • Setiono, R.1    Liu, H.2
  • 26
    • 0342378106 scopus 로고    scopus 로고
    • NeuroLinear: From neural networks to oblique decision rules
    • Setiono R., and Liu H. NeuroLinear: From neural networks to oblique decision rules. Neurocomputing 17 1 (1997) 1-24
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 1-24
    • Setiono, R.1    Liu, H.2
  • 28
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18 3 (2000) 205-219
    • (2000) Artificial Intelligence in Medicine , vol.18 , Issue.3 , pp. 205-219
    • Setiono, R.1
  • 29
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • Setiono R., Leow W.K., and Zurada J. Extraction of rules from artificial neural networks for nonlinear regression. IEEE Transactions on Neural Networks 13 3 (2002) 564-577
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.3
  • 30
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Tickle A.B., Andrews R., Golea M., and Diederich J. The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks 9 6 (1998) 1057-1068
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 31
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Tsukimoto H. Extracting rules from trained neural networks. IEEE Transactions on Neural Networks 11 2 (2000) 377-389
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.2 , pp. 377-389
    • Tsukimoto, H.1
  • 32
    • 0038030864 scopus 로고    scopus 로고
    • Extracting symbolic rules from trained neural network ensembles
    • Zhou Z.-H., Jiang Y., and Chen S.-F. Extracting symbolic rules from trained neural network ensembles. AI Communications 16 1 (2003) 3-15
    • (2003) AI Communications , vol.16 , Issue.1 , pp. 3-15
    • Zhou, Z.-H.1    Jiang, Y.2    Chen, S.-F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.