메뉴 건너뛰기




Volumn 75, Issue , 2012, Pages 78-98

An architecture for component-based design of representative-based clustering algorithms

Author keywords

Architecture; Generic algorithm; K means; Representative based clustering algorithms; Reusable component

Indexed keywords

CLUSTERING DESIGN; COMPONENT BASED DESIGN; EXPERIMENTAL EVALUATION; GENERIC ALGORITHM; K-MEANS; ORIGINAL ALGORITHMS; REUSABLE COMPONENTS;

EID: 84861095230     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2012.03.005     Document Type: Article
Times cited : (11)

References (108)
  • 8
    • 84862701443 scopus 로고    scopus 로고
    • A clustering approach for sampling data streams in sensor networks
    • 10.1007/s10115-011-0448-7
    • A. Da Silva, R. Chiky, and G. Hébrail A clustering approach for sampling data streams in sensor networks Knowledge and Information Systems 2011 10.1007/s10115-011-0448-7
    • (2011) Knowledge and Information Systems
    • Da Silva, A.1    Chiky, R.2    Hébrail, G.3
  • 11
    • 77953143033 scopus 로고    scopus 로고
    • Using Hybrid Hierarchical K-means (HHK) clustering algorithm for protein sequence motif Super-Rule-Tree (SRT) structure construction
    • B. Bhen, J. He, S. Pellicer, and Y. Pan Using Hybrid Hierarchical K-means (HHK) clustering algorithm for protein sequence motif Super-Rule-Tree (SRT) structure construction International Journal of Data Mining and Bioinformatics 4 3 2010 316 330
    • (2010) International Journal of Data Mining and Bioinformatics , vol.4 , Issue.3 , pp. 316-330
    • Bhen, B.1    He, J.2    Pellicer, S.3    Pan, Y.4
  • 14
    • 67651051840 scopus 로고    scopus 로고
    • Group analyses of connectivity-based cortical parcellation using repeated K-means clustering
    • L. Nanetti, L. Cerliani, V. Gazzola, R. Renken, and C. Keysers Group analyses of connectivity-based cortical parcellation using repeated K-means clustering NeuroImage 47 4 2009 1666 1677
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1666-1677
    • Nanetti, L.1    Cerliani, L.2    Gazzola, V.3    Renken, R.4    Keysers, C.5
  • 16
    • 77957752478 scopus 로고    scopus 로고
    • An integration of WordNet and fuzzy association rule mining for multi-label document clustering
    • C.-L. Chen, F. Tseng, and T. Liang An integration of WordNet and fuzzy association rule mining for multi-label document clustering Data & Knowledge Engineering 69 11 2010 1208 1226
    • (2010) Data & Knowledge Engineering , vol.69 , Issue.11 , pp. 1208-1226
    • Chen, C.-L.1    Tseng, F.2    Liang, T.3
  • 17
    • 78649506928 scopus 로고    scopus 로고
    • Comparative analysis fork-means algorithms in network community detection, advances in computation and intelligence
    • J. Liu Comparative analysis fork-means algorithms in network community detection, advances in computation and intelligence Lecture Notes in Computer Science 63 82 2010 158 169
    • (2010) Lecture Notes in Computer Science , vol.63 , Issue.82 , pp. 158-169
    • Liu, J.1
  • 19
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A. Jain Data clustering: 50 years beyond K-means Pattern Recognition Letters 31 8 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.1
  • 20
    • 67749150743 scopus 로고    scopus 로고
    • Clustering methods: A history of the K-means algorithm
    • P. Brito, Springer Verlag Heidelberg
    • H.H. Bock Clustering methods: a history of the K-means algorithm P. Brito, Selected Contributions in Data Analysis and Classification 2007 Springer Verlag Heidelberg 161 172
    • (2007) Selected Contributions in Data Analysis and Classification , pp. 161-172
    • Bock, H.H.1
  • 24
    • 0000459353 scopus 로고    scopus 로고
    • The Lack of a Priori Distinctions between Learning Algorithms
    • D.H. Wolpert The lack of a priori distinctions between learning algorithms Neural Computation 8 7 1996 1341 1390 (Pubitemid 126449973)
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 25
    • 80053313853 scopus 로고    scopus 로고
    • Measuring gene similarity by means of the classification distance
    • 10.1007/s10115-010-0374-0
    • E. Baralis, G. Bruno, and A. Flori Measuring gene similarity by means of the classification distance Knowledge and Information Systems 29 2011 81 101 10.1007/s10115-010-0374-0
    • (2011) Knowledge and Information Systems , vol.29 , pp. 81-101
    • Baralis, E.1    Bruno, G.2    Flori, A.3
  • 27
    • 77249124270 scopus 로고    scopus 로고
    • Formal design and implementation of constraints in software components
    • A. Coronato, and G. De Pietro Formal design and implementation of constraints in software components Advances in Engineering Software 41 2010 737 747
    • (2010) Advances in Engineering Software , vol.41 , pp. 737-747
    • Coronato, A.1    De Pietro, G.2
  • 29
    • 75749122583 scopus 로고    scopus 로고
    • Fast global K-means clustering using cluster membership and inequality
    • J. Lai Fast global K-means clustering using cluster membership and inequality Pattern Recognition 43 5 2010 1954 1963
    • (2010) Pattern Recognition , vol.43 , Issue.5 , pp. 1954-1963
    • Lai, J.1
  • 30
    • 45549104169 scopus 로고    scopus 로고
    • Modified global kK-means algorithm for minimum sum-of-squares clustering problems
    • A. Bagirov Modified global kK-means algorithm for minimum sum-of-squares clustering problems Pattern Recognition 41 10 2008 3192 3199
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 3192-3199
    • Bagirov, A.1
  • 31
    • 33744762091 scopus 로고    scopus 로고
    • Analysis of global k-means, an incremental heuristic for minimum sum-of-squares clustering
    • DOI 10.1007/s00357-005-0018-3
    • P. Hansen, E. Ngai, B.K. Cheung, and N. Mladenovic Analysis of global K-means, an incremental heuristic for minimum sum-of-squares clustering Journal of Classification 22 2 2005 287 310 (Pubitemid 43822959)
    • (2005) Journal of Classification , vol.22 , Issue.2 , pp. 287-310
    • Hansen, P.1    Ngai, E.2    Cheung, B.K.3    Mladenovic, N.4
  • 32
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • DOI 10.1016/S0031-3203(02)00060-2, PII S0031320302000602
    • A. Likas, M. Vlassis, and J. Verbeek The global K-means clustering algorithm Pattern Recognition 36 2 2003 451 461 (Pubitemid 35212840)
    • (2002) Pattern Recognition , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    J. Verbeek, J.3
  • 33
    • 77955271543 scopus 로고    scopus 로고
    • New fuzzy c-means clustering model based on the data weighted approach
    • C. Tang, S. Wang, and W. Xu New fuzzy c-means clustering model based on the data weighted approach Data & Knowledge Engineering 69 9 2010 881 998
    • (2010) Data & Knowledge Engineering , vol.69 , Issue.9 , pp. 881-998
    • Tang, C.1    Wang, S.2    Xu, W.3
  • 35
    • 43249119791 scopus 로고    scopus 로고
    • An efficient k′-means clustering algorithm
    • K. Žalik An efficient k′-means clustering algorithm Pattern Recognition Letters 29 9 2008 1385 1391
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1385-1391
    • Žalik, K.1
  • 39
    • 34447330447 scopus 로고    scopus 로고
    • A k-mean clustering algorithm for mixed numeric and categorical data
    • DOI 10.1016/j.datak.2007.03.016, PII S0169023X0700050X
    • A. Ahmad, and L. Dey A k-mean clustering algorithm for mixed numeric and categorical data Data and Knowledge Engineering 63 2 2007 503 527 10.1016/j.datak.2007.03.016 (Pubitemid 47053940)
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2 , pp. 503-527
    • Ahmad, A.1    Dey, L.2
  • 40
    • 56249119506 scopus 로고    scopus 로고
    • Incremental clustering of dynamic data streams using connectivity based representative points
    • 10.1016/j.datak.2008.08.006
    • Sebastian Lühr, and Mihai Lazarescu Incremental clustering of dynamic data streams using connectivity based representative points Data and Knowledge Engineering 68 1 2009 1 27 10.1016/j.datak.2008.08.006
    • (2009) Data and Knowledge Engineering , vol.68 , Issue.1 , pp. 1-27
    • Lühr, S.1    Lazarescu, M.2
  • 41
    • 84857969427 scopus 로고    scopus 로고
    • Class consistent k-means: Application to face and action recognition
    • 10.1016/j.cviu.2012.02.004
    • Z. Jiang, Z. Lin, and L.S. Davis Class consistent k-means: application to face and action recognition Computer Vision and Image Understanding 116 6 2012 730 741 10.1016/j.cviu.2012.02.004
    • (2012) Computer Vision and Image Understanding , vol.116 , Issue.6 , pp. 730-741
    • Jiang, Z.1    Lin, Z.2    Davis, L.S.3
  • 42
    • 82555200689 scopus 로고    scopus 로고
    • An improved K-means based method for fingerprint segmentation with sensor interoperability
    • 10.4028/www.scientific.net/AMM.135-136.237
    • Z.G. Yang, Y. Li, and G.P. Yang An improved K-means based method for fingerprint segmentation with sensor interoperability Applied Mechanics and Materials 135-136 2011 237 243 10.4028/www.scientific.net/AMM.135-136.237
    • (2011) Applied Mechanics and Materials , vol.135-136 , pp. 237-243
    • Yang, Z.G.1    Li, Y.2    Yang, G.P.3
  • 43
    • 79952545400 scopus 로고    scopus 로고
    • A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
    • 10.1016/j.patrec.2011.02.017
    • A. Ahmad, and L. Dey A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets Pattern Recognition Letters 32 7 2011 1062 1069 10.1016/j.patrec.2011.02.017
    • (2011) Pattern Recognition Letters , vol.32 , Issue.7 , pp. 1062-1069
    • Ahmad, A.1    Dey, L.2
  • 47
    • 0001218972 scopus 로고
    • Clustering and the continuous K-means algorithm
    • V. Faber Clustering and the continuous K-means algorithm Los Alamos Science 22 1994 138 144
    • (1994) Los Alamos Science , vol.22 , pp. 138-144
    • Faber, V.1
  • 48
    • 0142136684 scopus 로고    scopus 로고
    • Local Optima in K-Means Clustering: What You Don't Know May Hurt You
    • DOI 10.1037/1082-989X.8.3.294
    • D. Steinley Local optima in K-means clustering: what you don't know may hurt you Psychological Methods 8 3 2003 294 304 (Pubitemid 37268947)
    • (2003) Psychological Methods , vol.8 , Issue.3 , pp. 294-304
    • Steinley, D.1
  • 52
    • 0005734135 scopus 로고
    • Reusable software engineering: Concepts and research directions
    • P. Freeman, IEEE Computer Society Press
    • P. Freeman Reusable software engineering: concepts and research directions P. Freeman, Tutorial: Software Reusability 1987 IEEE Computer Society Press 10 23
    • (1987) Tutorial: Software Reusability , pp. 10-23
    • Freeman, P.1
  • 53
    • 25844525763 scopus 로고    scopus 로고
    • Software reuse research: Status and future
    • DOI 10.1109/TSE.2005.85
    • W. Frakes, and K. Kang Software reuse research: status and future IEEE Transactions on Software Engineering 31 7 2005 529 536 (Pubitemid 41387747)
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.7 , pp. 529-536
    • Frakes, W.B.1    Kang, K.2
  • 54
    • 84879584316 scopus 로고    scopus 로고
    • A pattern based data mining approach
    • Burkhardt Preisach, Schmidt-Thieme Decker, Springer Verlag 10.1007/978-3-540-78246-9-39
    • B. Delibašić, K. Kirchner, and J. Ruhland A pattern based data mining approach Burkhardt Preisach, Schmidt-Thieme Decker, Data Analysis, Machine Learning and Applications 2008 Springer Verlag 327 334 10.1007/978-3-540-78246-9-39
    • (2008) Data Analysis, Machine Learning and Applications , pp. 327-334
    • Delibašić, B.1    Kirchner, K.2    Ruhland, J.3
  • 55
    • 56249119506 scopus 로고    scopus 로고
    • Incremental clustering of dynamic data streams using connectivity based representative points
    • S. Lühr, and M. Lazarescu Incremental clustering of dynamic data streams using connectivity based representative points Data & Knowledge Engineering 68 2009 1 27
    • (2009) Data & Knowledge Engineering , vol.68 , pp. 1-27
    • Lühr, S.1    Lazarescu, M.2
  • 56
    • 15544385732 scopus 로고    scopus 로고
    • Automatic feature extraction for classifying audio data
    • DOI 10.1007/s10994-005-5824-7
    • I. Mierswa, and K. Morik Automatic feature extraction for classifying audio data Machine Learning 58 2-3 2005 127 149 (Pubitemid 40400635)
    • (2005) Machine Learning , vol.58 , Issue.2-3 , pp. 127-149
    • Mierswa, I.1    Morik, K.2
  • 57
    • 84861099216 scopus 로고    scopus 로고
    • A systematic evaluation of different methods for initializing the k-means clustering algorithm
    • Department of Statistics, Ames, IA, 2010
    • A.D. Peterson, A.P. Ghosh, R. Maitra. A systematic evaluation of different methods for initializing the k-means clustering algorithm. Technical Report 07, Iowa State University, Department of Statistics, Ames, IA, 2010. 2010.
    • (2010) Technical Report 07, Iowa State University
    • Peterson, A.D.1    Ghosh, A.P.2    Maitra, R.3
  • 60
    • 84931278577 scopus 로고    scopus 로고
    • Symulacyjnaoptymalizacjawyboruproceduryklasyfikacyjnejdladanegotypudanych - Charakterystykaproblemu
    • M. Walesiak, and A. Dudek Symulacyjnaoptymalizacjawyboruproceduryklasyfikacyjnejdladanegotypudanych - charakterystykaproblemu ZeszytyNaukoweUniwersytetuSzczecinskiego 450 2007 635 646
    • (2007) ZeszytyNaukoweUniwersytetuSzczecinskiego , vol.450 , pp. 635-646
    • Walesiak, M.1    Dudek, A.2
  • 62
    • 0020102027 scopus 로고
    • Least squares quantization in PCM [Pulse-Code Modulation.]
    • 10.1109/TIT.1982.1056489
    • S.P. Lloyd Least squares quantization in PCM [Pulse-Code Modulation.] IEEE Transactions on Information Theory 28 1982 129 137 10.1109/TIT.1982.1056489
    • (1982) IEEE Transactions on Information Theory , vol.28 , pp. 129-137
    • Lloyd, S.P.1
  • 67
    • 18844392069 scopus 로고    scopus 로고
    • FlowMate: Scalable on-line flow clustering
    • DOI 10.1109/TNET.2005.845532
    • O. Younis, and S. Fahmy FlowMate: scalable on-line flow clustering IEEE/ACM Transactions on Network 13 2 2005 288 301 10.1109/TNET.2005.845532 (Pubitemid 40690826)
    • (2005) IEEE/ACM Transactions on Networking , vol.13 , Issue.2 , pp. 288-301
    • Younis, O.1    Fahmy, S.2
  • 68
    • 76849111564 scopus 로고    scopus 로고
    • Linear-time approximation schemes for clustering problems in any dimensions
    • 10.1145/1667053.1667054
    • Amit Kumar, Yogish Sabharwal, and Sandeep Sen Linear-time approximation schemes for clustering problems in any dimensions Journal of the ACM 57 2 2010 10.1145/1667053.1667054
    • (2010) Journal of the ACM , vol.57 , Issue.2
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 71
    • 84969135721 scopus 로고    scopus 로고
    • K-Means++: The advantages of careful seeding
    • Society for Industrial and Applied Mathematics New Orleans, Louisiana
    • D. Arthur, and S. Vassilvitskii K-Means++: the advantages of careful seeding Proc. Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms 2007 Society for Industrial and Applied Mathematics New Orleans, Louisiana 1027 1035
    • (2007) Proc. Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms , pp. 1027-1035
    • Arthur, D.1    Vassilvitskii, S.2
  • 72
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J. Hartigan, and M. Wong A k-means clustering algorithm Applied Statistics 28 1979 100 108
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 75
    • 0041328214 scopus 로고    scopus 로고
    • K*-Means: A new generalized k-means clustering algorithm
    • DOI 10.1016/S0167-8655(03)00146-6
    • Y. Cheung k*-Means: a new generalized k-means clustering algorithm Pattern Recognition Letters 24 2003 2883 2893 (Pubitemid 37027808)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.15 , pp. 2883-2893
    • Cheung, Y.-M.1
  • 76
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • J. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis Journal of Computational and Applied Mathematics 20 1987 53 65
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, J.1
  • 82
    • 33749469755 scopus 로고    scopus 로고
    • TANAGRA: Un logicielgratuit pour l'enseignement et la recherche
    • R. Rakotomalala TANAGRA: un logicielgratuit pour l'enseignement et la recherche Actes de EGC'2005, RNTI-E-3 vol. 2 2005 697 702
    • (2005) Actes de EGC'2005, RNTI-E-3 , vol.2 , pp. 697-702
    • Rakotomalala, R.1
  • 84
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing Vienna, Austria 3-900051-07-0
    • R Development Core Team R: A Language and Environment for Statistical Computing 2008 R Foundation for Statistical Computing Vienna, Austria 3-900051-07-0 URL http://www.R-project.org
    • (2008) R: A Language and Environment for Statistical Computing
  • 89
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • G. Milligan An examination of the effect of six types of error perturbation on fifteen clustering algorithms Psychometrika 45 1980 325 342
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.1
  • 90
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J.H. Ward Hierarchical grouping to optimize an objective function Journal of the American Statistical Association 58 301 1963 236 244
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 91
    • 0038791853 scopus 로고    scopus 로고
    • An Information Theoretic External Cluster Validity Measure
    • IBM's Almaden Research Center San Jose, CA
    • B. Dom An Information Theoretic External Cluster Validity Measure IBM Research Report RJ 10219 2001 IBM's Almaden Research Center San Jose, CA
    • (2001) IBM Research Report RJ 10219
    • Dom, B.1
  • 92
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science
    • A. Asuncion, and D.J. Newman UCI Machine Learning Repository 2007 University of California, School of Information and Computer Science [ www.ics.uci.edu/~mlearn/MLRepository.html ]
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 93
    • 34447330447 scopus 로고    scopus 로고
    • A k-mean clustering algorithm for mixed numeric and categorical data
    • DOI 10.1016/j.datak.2007.03.016, PII S0169023X0700050X
    • A. Ahmad, and L. Dey A k-mean clustering algorithm for mixed numeric and categorical data Data & Knowledge Engineering 63 2 2007 503 527 (Pubitemid 47053940)
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2 , pp. 503-527
    • Ahmad, A.1    Dey, L.2
  • 95
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms
    • V. Estivill-Castro Why so many clustering algorithms SIGKDD Explorations 4 1 2002 65 75
    • (2002) SIGKDD Explorations , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 102
    • 84867097182 scopus 로고    scopus 로고
    • Web user clustering and Web prefetching using Random Indexing with weight functions
    • 10.1007/s10115-011-0453-x
    • M. Wan, A. Jönsson, C. Wang, L. Li, and Y. Yang Web user clustering and Web prefetching using Random Indexing with weight functions Knowledge and Information Systems 2011 10.1007/s10115-011-0453-x
    • (2011) Knowledge and Information Systems
    • Wan, M.1    Jönsson, A.2    Wang, C.3    Li, L.4    Yang, Y.5
  • 104
    • 84861092784 scopus 로고    scopus 로고
    • Diversity of specific quantitative, statistical and social methods, techniques and management models in management system
    • G. Savoiu, O. Jaško, and M. Čudanov Diversity of specific quantitative, statistical and social methods, techniques and management models in management system Management 14 52 2010 5 13
    • (2010) Management , vol.14 , Issue.52 , pp. 5-13
    • Savoiu, G.1    Jaško, O.2    Čudanov, M.3
  • 106
    • 84865438432 scopus 로고    scopus 로고
    • Interpretable and reconfigurable clustering of document datasets by deriving word-based rules
    • 10.1007/s10115-011-0446-9
    • V. Balachandran, and D. Khemani Interpretable and reconfigurable clustering of document datasets by deriving word-based rules Knowledge and Information Systems 2011 10.1007/s10115-011-0446-9
    • (2011) Knowledge and Information Systems
    • Balachandran, V.1    Khemani, D.2
  • 107
    • 79951676428 scopus 로고    scopus 로고
    • Document clustering using synthetic cluster prototypes
    • doi:j.datak.2010.12.002
    • A. Kalogeratos, and A. Likas Document clustering using synthetic cluster prototypes Data & Knowledge Engineering 70 3 2011 284 306 doi:j.datak.2010.12.002
    • (2011) Data & Knowledge Engineering , vol.70 , Issue.3 , pp. 284-306
    • Kalogeratos, A.1    Likas, A.2
  • 108
    • 77957752478 scopus 로고    scopus 로고
    • An integration of WordNet and fuzzy association rule mining for multi-label document clustering
    • doi:j.datak.2010.08.003
    • C.-L. Chen, and F.S.C. Tseng An integration of WordNet and fuzzy association rule mining for multi-label document clustering Data & Knowledge Engineering 69 11 2010 doi:j.datak.2010.08.003
    • (2010) Data & Knowledge Engineering , vol.69 , Issue.11
    • Chen, C.-L.1    Tseng, F.S.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.