메뉴 건너뛰기




Volumn 5769 LNCS, Issue PART 2, 2009, Pages 20-29

Mining rules for the automatic selection process of clustering methods applied to cancer gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DISEASES; GENE EXPRESSION; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 70450167640     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04277-5_3     Document Type: Conference Paper
Times cited : (22)

References (22)
  • 1
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (5439), 531-537 (1999)
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1
  • 2
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
    • Alizadeh, A.A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403 (6769), 503-511 (2000)
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.A.1
  • 3
    • 15944365840 scopus 로고    scopus 로고
    • Diagnostic signatures from microarrays: A bioinformatics concept for personalized medicine
    • Spang, R.: Diagnostic signatures from microarrays: a bioinformatics concept for personalized medicine. Biosilico 1(2), 64-68 (2003)
    • (2003) Biosilico , vol.1 , Issue.2 , pp. 64-68
    • Spang, R.1
  • 4
    • 11344295027 scopus 로고    scopus 로고
    • Comparative analysis of clustering methods for gene expression time course data
    • Costa, I.G., et al.: Comparative analysis of clustering methods for gene expression time course data. Genetics and Molecular Biology 27(4), 623-631 (2004)
    • (2004) Genetics and Molecular Biology , vol.27 , Issue.4 , pp. 623-631
    • Costa, I.G.1
  • 5
    • 33749428430 scopus 로고    scopus 로고
    • Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
    • Datta, S., Datta, S.: Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics 7, 397 (2006)
    • (2006) BMC Bioinformatics , vol.7 , pp. 397
    • Datta, S.1    Datta, S.2
  • 6
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • D'haeseleer, P.: How does gene expression clustering work? Nature Biotechnology 23(12), 1499-1501 (2005)
    • (2005) Nature Biotechnology , vol.23 , Issue.12 , pp. 1499-1501
    • D'haeseleer, P.1
  • 7
    • 60849101344 scopus 로고    scopus 로고
    • Clustering cancer gene expression data: A comparative study
    • de Souto, M.C., et al.: Clustering cancer gene expression data: a comparative study. BMC Bioinformatics 9, 497 (2008)
    • (2008) BMC Bioinformatics , vol.9 , pp. 497
    • de Souto, M.C.1
  • 8
    • 85158107323 scopus 로고    scopus 로고
    • Vilalta, R., et al.: Using meta-learning to support datamining. Intern. Journal of Computer Science Application 1(31), 31-45 (2004)
    • Vilalta, R., et al.: Using meta-learning to support datamining. Intern. Journal of Computer Science Application 1(31), 31-45 (2004)
  • 9
    • 1642379397 scopus 로고    scopus 로고
    • Introduction to the special issue on meta-learning
    • Giraud-Carrier, C., et al.: Introduction to the special issue on meta-learning. Machine Learning 54(3), 187-193 (2004)
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 187-193
    • Giraud-Carrier, C.1
  • 11
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
    • Brazdil, P., et al.: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning 50(3), 251-277 (2003)
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.1
  • 12
    • 1642280141 scopus 로고    scopus 로고
    • On data and algorithms - understanding inductive performance
    • Kalousis, A., Gama, J., Hilario, M.: On data and algorithms - understanding inductive performance. Machine Learning 54(3), 275-312 (2004)
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 275-312
    • Kalousis, A.1    Gama, J.2    Hilario, M.3
  • 13
    • 10244243684 scopus 로고    scopus 로고
    • Meta-learning approaches to selecting time series models
    • Pruděncio, R.B.C., Ludermir, T.B.: Meta-learning approaches to selecting time series models. Neurocomputing 61, 121-137 (2004)
    • (2004) Neurocomputing , vol.61 , pp. 121-137
    • Pruděncio, R.B.C.1    Ludermir, T.B.2
  • 14
    • 85158099274 scopus 로고    scopus 로고
    • Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series
    • to appear
    • Wang, X., et al.: Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing (2008) (to appear)
    • (2008) Neurocomputing
    • Wang, X.1
  • 16
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1), 1-25 (2008)
    • (2008) ACM Computing Surveys , vol.41 , Issue.1 , pp. 1-25
    • Smith-Miles, K.1
  • 17
    • 0000235019 scopus 로고
    • A study of standardization of variables in cluster analysis
    • Milligan, G., Cooper, M.: A study of standardization of variables in cluster analysis. Journal of Classification 5, 181-204 (1988)
    • (1988) Journal of Classification , vol.5 , pp. 181-204
    • Milligan, G.1    Cooper, M.2
  • 18
    • 56349090074 scopus 로고    scopus 로고
    • Ranking and selecting clustering algorithms using a meta-learning approach
    • IEEE Computer Society, Los Alamitos
    • de Souto, M.C.P., et al.: Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of the International Joint Conference on Neural Networks. IEEE Computer Society, Los Alamitos (2008)
    • (2008) Proceedings of the International Joint Conference on Neural Networks
    • de Souto, M.C.P.1
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.