-
1
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (5439), 531-537 (1999)
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.1
-
2
-
-
0034598746
-
Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
-
Alizadeh, A.A., et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403 (6769), 503-511 (2000)
-
(2000)
Nature
, vol.403
, Issue.6769
, pp. 503-511
-
-
Alizadeh, A.A.1
-
3
-
-
15944365840
-
Diagnostic signatures from microarrays: A bioinformatics concept for personalized medicine
-
Spang, R.: Diagnostic signatures from microarrays: a bioinformatics concept for personalized medicine. Biosilico 1(2), 64-68 (2003)
-
(2003)
Biosilico
, vol.1
, Issue.2
, pp. 64-68
-
-
Spang, R.1
-
4
-
-
11344295027
-
Comparative analysis of clustering methods for gene expression time course data
-
Costa, I.G., et al.: Comparative analysis of clustering methods for gene expression time course data. Genetics and Molecular Biology 27(4), 623-631 (2004)
-
(2004)
Genetics and Molecular Biology
, vol.27
, Issue.4
, pp. 623-631
-
-
Costa, I.G.1
-
5
-
-
33749428430
-
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
-
Datta, S., Datta, S.: Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics 7, 397 (2006)
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 397
-
-
Datta, S.1
Datta, S.2
-
6
-
-
28644449917
-
How does gene expression clustering work?
-
D'haeseleer, P.: How does gene expression clustering work? Nature Biotechnology 23(12), 1499-1501 (2005)
-
(2005)
Nature Biotechnology
, vol.23
, Issue.12
, pp. 1499-1501
-
-
D'haeseleer, P.1
-
7
-
-
60849101344
-
Clustering cancer gene expression data: A comparative study
-
de Souto, M.C., et al.: Clustering cancer gene expression data: a comparative study. BMC Bioinformatics 9, 497 (2008)
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 497
-
-
de Souto, M.C.1
-
8
-
-
85158107323
-
-
Vilalta, R., et al.: Using meta-learning to support datamining. Intern. Journal of Computer Science Application 1(31), 31-45 (2004)
-
Vilalta, R., et al.: Using meta-learning to support datamining. Intern. Journal of Computer Science Application 1(31), 31-45 (2004)
-
-
-
-
9
-
-
1642379397
-
Introduction to the special issue on meta-learning
-
Giraud-Carrier, C., et al.: Introduction to the special issue on meta-learning. Machine Learning 54(3), 187-193 (2004)
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 187-193
-
-
Giraud-Carrier, C.1
-
11
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
Brazdil, P., et al.: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning 50(3), 251-277 (2003)
-
(2003)
Machine Learning
, vol.50
, Issue.3
, pp. 251-277
-
-
Brazdil, P.1
-
12
-
-
1642280141
-
On data and algorithms - understanding inductive performance
-
Kalousis, A., Gama, J., Hilario, M.: On data and algorithms - understanding inductive performance. Machine Learning 54(3), 275-312 (2004)
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 275-312
-
-
Kalousis, A.1
Gama, J.2
Hilario, M.3
-
13
-
-
10244243684
-
Meta-learning approaches to selecting time series models
-
Pruděncio, R.B.C., Ludermir, T.B.: Meta-learning approaches to selecting time series models. Neurocomputing 61, 121-137 (2004)
-
(2004)
Neurocomputing
, vol.61
, pp. 121-137
-
-
Pruděncio, R.B.C.1
Ludermir, T.B.2
-
14
-
-
85158099274
-
Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series
-
to appear
-
Wang, X., et al.: Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing (2008) (to appear)
-
(2008)
Neurocomputing
-
-
Wang, X.1
-
16
-
-
49749086726
-
Cross-disciplinary perspectives on meta-learning for algorithm selection
-
Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1), 1-25 (2008)
-
(2008)
ACM Computing Surveys
, vol.41
, Issue.1
, pp. 1-25
-
-
Smith-Miles, K.1
-
17
-
-
0000235019
-
A study of standardization of variables in cluster analysis
-
Milligan, G., Cooper, M.: A study of standardization of variables in cluster analysis. Journal of Classification 5, 181-204 (1988)
-
(1988)
Journal of Classification
, vol.5
, pp. 181-204
-
-
Milligan, G.1
Cooper, M.2
-
18
-
-
56349090074
-
Ranking and selecting clustering algorithms using a meta-learning approach
-
IEEE Computer Society, Los Alamitos
-
de Souto, M.C.P., et al.: Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of the International Joint Conference on Neural Networks. IEEE Computer Society, Los Alamitos (2008)
-
(2008)
Proceedings of the International Joint Conference on Neural Networks
-
-
de Souto, M.C.P.1
-
20
-
-
56449100417
-
Maximum likelihood rule ensembles
-
Dembczyński, K., Kotlowski, W., Slowiński, R.: Maximum likelihood rule ensembles. In: Proceedings of the 25th International Conference on Machine Learning, ICML, pp. 224-231 (2008)
-
(2008)
Proceedings of the 25th International Conference on Machine Learning, ICML
, pp. 224-231
-
-
Dembczyński, K.1
Kotlowski, W.2
Slowiński, R.3
-
21
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
22
-
-
1842564359
-
-
Blackwell Publishing, Malden
-
Cauton, H.C., Quackenbush, J., Brazma, A.: Microarray Gene Expression Data Analysis: A Beginner's Guide. Blackwell Publishing, Malden (2003)
-
(2003)
Microarray Gene Expression Data Analysis: A Beginner's Guide
-
-
Cauton, H.C.1
Quackenbush, J.2
Brazma, A.3
|