메뉴 건너뛰기




Volumn 6, Issue 1, 2009, Pages 144-157

Initializing partition-optimization algorithms

Author keywords

And association rules; Classification; Clustering; Multivariate statistics; Singular value decomposition; Statistical methods

Indexed keywords

AND ASSOCIATION RULES; CLASSIFICATION; CLUSTERING; MULTIVARIATE STATISTICS; STATISTICAL METHODS;

EID: 59649096447     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2007.70244     Document Type: Article
Times cited : (107)

References (51)
  • 1
    • 0027453616 scopus 로고
    • Model-Based Gaussian and Non-Gaussian Clustering
    • J.D. Banfield and A.E. Raftery, "Model-Based Gaussian and Non-Gaussian Clustering," Biometrics, vol. 49, pp. 803-821, 1993.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 0004052214 scopus 로고
    • Piece-Wise Hierarchical Clustering
    • G. Brossier, "Piece-Wise Hierarchical Clustering," J. Classification, vol. 7, pp. 197-216, 1990.
    • (1990) J. Classification , vol.7 , pp. 197-216
    • Brossier, G.1
  • 4
    • 0030285833 scopus 로고    scopus 로고
    • Approximate Single Linkage Cluster Analysis of Large Datasets in High-Dimensional Spaces
    • W.F. Eddy, A. Mockus, and S. Oue, "Approximate Single Linkage Cluster Analysis of Large Datasets in High-Dimensional Spaces," Computational Statistics and Data Analysis, vol. 23, pp. 29-43, 1996.
    • (1996) Computational Statistics and Data Analysis , vol.23 , pp. 29-43
    • Eddy, W.F.1    Mockus, A.2    Oue, S.3
  • 5
    • 38249030870 scopus 로고
    • A Finite Mixture Model for the Clustering of Mixed-Mode Data
    • B.S. Everitt, "A Finite Mixture Model for the Clustering of Mixed-Mode Data," Statistics and Probability Letters, vol. 6, pp. 305-309, 1988.
    • (1988) Statistics and Probability Letters , vol.6 , pp. 305-309
    • Everitt, B.S.1
  • 7
    • 33748888529 scopus 로고
    • Statistical Theory in Clustering
    • J. Hartigan, "Statistical Theory in Clustering," J. Classification, vol. 2, pp. 63-76, 1985.
    • (1985) J. Classification , vol.2 , pp. 63-76
    • Hartigan, J.1
  • 8
    • 33746257145 scopus 로고    scopus 로고
    • The Practice of Cluster Analysis
    • J.R. Kettenring, "The Practice of Cluster Analysis," J. Classification, vol. 23, pp. 3-30, 2006.
    • (2006) J. Classification , vol.23 , pp. 3-30
    • Kettenring, J.R.1
  • 10
    • 0003988626 scopus 로고
    • Nonparametric Clustering Techniques
    • Wiley
    • D.B. Ramey, "Nonparametric Clustering Techniques," Encyclopedia of Statistical Science, vol. 6, pp. 318-319, Wiley, 1985.
    • (1985) Encyclopedia of Statistical Science , vol.6 , pp. 318-319
    • Ramey, D.B.1
  • 11
    • 0004071780 scopus 로고
    • Classification and Clustering in Spatial and Image Data
    • Springer-Verlag
    • B.D. Ripley, "Classification and Clustering in Spatial and Image Data," Analyzing and Modeling Data and Knowledge, pp. 85-91, Springer-Verlag, 1991.
    • (1991) Analyzing and Modeling Data and Knowledge , pp. 85-91
    • Ripley, B.D.1
  • 12
    • 0002643871 scopus 로고
    • Clustering Criteria and Multivariate Normal Mixtures
    • M.J. Symons, "Clustering Criteria and Multivariate Normal Mixtures," Biometrics, vol. 37, pp. 35-43, 1981.
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1
  • 14
    • 34247969087 scopus 로고
    • On Some Invariant Criteria for Grouping Data
    • H.P. Friedman and J. Rubin, "On Some Invariant Criteria for Grouping Data," J. Am. Statistical Assoc, vol. 62, pp. 1159-1178, 1967.
    • (1967) J. Am. Statistical Assoc , vol.62 , pp. 1159-1178
    • Friedman, H.P.1    Rubin, J.2
  • 15
    • 0001340183 scopus 로고
    • Clustering Methods Based on Likelihood Ratio Criteria
    • A.J. Scott and M.J. Symons, "Clustering Methods Based on Likelihood Ratio Criteria," Biometrics, vol. 27, pp. 387-397, 1971.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 16
    • 34248971907 scopus 로고
    • On Grouping for Maximum Homogeneity
    • W.D. Fisher, "On Grouping for Maximum Homogeneity," J. Am. Statistical Assoc., vol. 53, pp. 789-798, 1958.
    • (1958) J. Am. Statistical Assoc , vol.53 , pp. 789-798
    • Fisher, W.D.1
  • 18
    • 0142136684 scopus 로고    scopus 로고
    • Local Optima in k-means Clustering: What You Don't Know May Hurt You
    • D. Steinley, "Local Optima in k-means Clustering: What You Don't Know May Hurt You," Psychological Methods, vol. 8, pp. 294-304, 2003.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 19
    • 0035983620 scopus 로고    scopus 로고
    • Starch Synthesis in Arabidopsis. Granule Synthesis, Composition, and Structure
    • S.C. Zeeman, A. Tiessen, E. Pilling, K.L. Kato, A.M. Donald, and A.M. Smith, "Starch Synthesis in Arabidopsis. Granule Synthesis, Composition, and Structure," Plant Physiology, vol. 129, pp. 516-529, 2002.
    • (2002) Plant Physiology , vol.129 , pp. 516-529
    • Zeeman, S.C.1    Tiessen, A.2    Pilling, E.3    Kato, K.L.4    Donald, A.M.5    Smith, A.M.6
  • 21
    • 14744275289 scopus 로고    scopus 로고
    • Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves
    • S.M. Smith, D.C. Fulton, T. Chia, D. Thomeycroft, A. Chappie, H. Dunstan, C. Hylton, S.C. Zeeman, and A.M. Smith, "Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves," Plant Physiology, vol. 136, pp. 2687-2699, 2004.
    • (2004) Plant Physiology , vol.136 , pp. 2687-2699
    • Smith, S.M.1    Fulton, D.C.2    Chia, T.3    Thomeycroft, D.4    Chappie, A.5    Dunstan, H.6    Hylton, C.7    Zeeman, S.C.8    Smith, A.M.9
  • 23
    • 0003595078 scopus 로고
    • Physical and Mental Development of Children with Prenatal Exposure to Mercury from Fish. Stage I: Preliminary Tests at Age 4
    • T. Kjellstrom, P. Kennedy, S. Wallis, and C. Mantell, Physical and Mental Development of Children with Prenatal Exposure to Mercury from Fish. Stage I: Preliminary Tests at Age 4. Swedish Nat'l Environmental Protection Board, 1986.
    • (1986) Swedish Nat'l Environmental Protection Board
    • Kjellstrom, T.1    Kennedy, P.2    Wallis, S.3    Mantell, C.4
  • 24
    • 0032999396 scopus 로고    scopus 로고
    • Prenatal Methylmercury Exposure as a Cardiovascular Risk Factor at Seven Years of Age
    • N. Sörensen, K. Murata, E. Budtz-Jørgensen, P. Weihe, and P. Grandjean, "Prenatal Methylmercury Exposure as a Cardiovascular Risk Factor at Seven Years of Age," Epidemiology, vol. 10, no. 4, pp. 370-375, 1999.
    • (1999) Epidemiology , vol.10 , Issue.4 , pp. 370-375
    • Sörensen, N.1    Murata, K.2    Budtz-Jørgensen, E.3    Weihe, P.4    Grandjean, P.5
  • 25
    • 59649117695 scopus 로고    scopus 로고
    • Toxicological Effects of Methylmercury, N.A. of Sciences, Nat'l Academy Press, 2000.
    • Toxicological Effects of Methylmercury, N.A. of Sciences, Nat'l Academy Press, 2000.
  • 28
    • 33748324384 scopus 로고    scopus 로고
    • R Development Core Team, ISBN 3-900051-07-0, R-project.org
    • R: A Language and Environment for Statistical Computing, R Development Core Team, R Foundation for Statistical Computing, ISBN 3-900051-07-0, http://www.R-project.org, 2006.
    • (2006) R: A Language and Environment for Statistical Computing
  • 29
    • 0033204902 scopus 로고    scopus 로고
    • An Empirical Comparison of Four Initialization Methods for the k-Means Algorithm
    • J.A. Lozano, J.M.P. Na, and P.L. Naga, "An Empirical Comparison of Four Initialization Methods for the k-Means Algorithm," Pattern Recognition Letters, vol. 20, pp. 1027-1040, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1027-1040
    • Lozano, J.A.1    Na, J.M.P.2    Naga, P.L.3
  • 32
    • 0032269108 scopus 로고    scopus 로고
    • How Many Clusters? Which Cluster Method? Answers via Model-Based Cluster Analysis
    • C. Fraley and A.E. Raftery, "How Many Clusters? Which Cluster Method? Answers via Model-Based Cluster Analysis," Computer J., vol. 41, pp. 578-588, 1998.
    • (1998) Computer J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 33
    • 15044346962 scopus 로고    scopus 로고
    • Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data
    • G.C. Tseng and W.H. Wong, "Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data," Biometrics, vol. 61, pp. 10-16, 2005.
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 34
  • 35
    • 0037469122 scopus 로고    scopus 로고
    • Choosing Starting Values for the Em Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models
    • C. Biemacki, G.C. Celeux, and G. Govaert, "Choosing Starting Values for the Em Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models," Computational Statistics and Data Analysis, vol. 413, pp. 561-575, 2003.
    • (2003) Computational Statistics and Data Analysis , vol.413 , pp. 561-575
    • Biemacki, C.1    Celeux, G.C.2    Govaert, G.3
  • 37
    • 0007425929 scopus 로고    scopus 로고
    • Bump-Hunting in High-Dimensional Data
    • J. Friedman and N. Fisher, "Bump-Hunting in High-Dimensional Data," Statistics and Computing, vol. 9, no. 2, pp. 1-20, 1999.
    • (1999) Statistics and Computing , vol.9 , Issue.2 , pp. 1-20
    • Friedman, J.1    Fisher, N.2
  • 38
    • 0000008146 scopus 로고    scopus 로고
    • L. Hubert and P. Arabic, Comparing Partitions, J. Classification, 2, pp. 193-218, 1985.
    • L. Hubert and P. Arabic, "Comparing Partitions," J. Classification, vol. 2, pp. 193-218, 1985.
  • 39
    • 84950632109 scopus 로고
    • Objective Criteria for the Evaluation of Clustering Methods
    • W.M. Rand, "Objective Criteria for the Evaluation of Clustering Methods," J. Am. Statistical Assoc., vol. 66, pp. 846-850, 1971.
    • (1971) J. Am. Statistical Assoc , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 40
    • 34250871625 scopus 로고    scopus 로고
    • Initializing k-Means Batch Clustering: A Critical Evaluation of Several Techniques
    • D. Steinley and M.J. Brusco, "Initializing k-Means Batch Clustering: A Critical Evaluation of Several Techniques," J. Classification, vol. 24, pp. 99-121, 2007.
    • (2007) J. Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.J.2
  • 41
    • 0001138328 scopus 로고
    • A k-Means Clustering Algorithm
    • J.A. Hartigan and M.A. Wong, "A k-Means Clustering Algorithm," Applied Statistics, vol. 28, pp. 100-108, 1979.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 42
    • 0015113659 scopus 로고
    • Practical Problems in a Method of Cluster Analysis
    • F.H. Marriott, "Practical Problems in a Method of Cluster Analysis," Biometrics, vol. 27, pp. 501-514, 1971.
    • (1971) Biometrics , vol.27 , pp. 501-514
    • Marriott, F.H.1
  • 43
    • 0000120766 scopus 로고
    • Estimating the Dimensions of a Model
    • G. Schwarz, "Estimating the Dimensions of a Model," Annals of Statistics, vol. 6, pp. 461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 46
    • 0025933503 scopus 로고
    • Expert System for Predicting Protein Localization Sites in Gram-Negative Bacteria
    • K. Nakai and M. Kinehasa, "Expert System for Predicting Protein Localization Sites in Gram-Negative Bacteria," PROTEINS: Structure, Function, and Genetics, vol. 11, pp. 95-110, 1991.
    • (1991) PROTEINS: Structure, Function, and Genetics , vol.11 , pp. 95-110
    • Nakai, K.1    Kinehasa, M.2
  • 48
    • 0030332781 scopus 로고
    • A Probabilistic Classification System for Predicting the Cellular Localization Sites of Proteins
    • P. Horton and K. Nakai, "A Probabilistic Classification System for Predicting the Cellular Localization Sites of Proteins," Intelligent Systems in Molecular Biology, pp. 109-115, 1985.
    • (1985) Intelligent Systems in Molecular Biology , pp. 109-115
    • Horton, P.1    Nakai, K.2
  • 49
    • 0001677717 scopus 로고
    • Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
    • Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing," J. Royal Statistical Soc., vol. 57, pp. 289-300, 1995.
    • (1995) J. Royal Statistical Soc , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 50
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the Number of Clusters in a Dataset via the Gap Statistic
    • R.J. Tibshirani, G. Walther, and T.J. Hastie, "Estimating the Number of Clusters in a Dataset via the Gap Statistic," J. Royal Statistical Soc., vol. 63, no. 2, pp. 411-423, 2003.
    • (2003) J. Royal Statistical Soc , vol.63 , Issue.2 , pp. 411-423
    • Tibshirani, R.J.1    Walther, G.2    Hastie, T.J.3
  • 51
    • 0015615312 scopus 로고
    • Statistical Behavior of Rain Attenuation
    • S.H. Lin, "Statistical Behavior of Rain Attenuation," Bell System Technical J., vol. 52, no. 4, pp. 557-581, 1973.
    • (1973) Bell System Technical J , vol.52 , Issue.4 , pp. 557-581
    • Lin, S.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.