메뉴 건너뛰기




Volumn 37, Issue 3, 2006, Pages 247-260

Evapotranspiration estimation using feed-forward neural networks

Author keywords

Conjugate gradient; Evapotranspiration; Hargreaves; Levenberg Marquardt; Neural networks; Penman

Indexed keywords

AIR; ALGORITHMS; ATMOSPHERIC HUMIDITY; ESTIMATION; FEEDFORWARD NEURAL NETWORKS; REGRESSION ANALYSIS; SOILS; SOLAR RADIATION; TEMPERATURE; WIND EFFECTS;

EID: 33746879196     PISSN: 00291277     EISSN: None     Source Type: Journal    
DOI: 10.2166/nh.2006.010     Document Type: Article
Times cited : (76)

References (42)
  • 2
    • 0003491818 scopus 로고    scopus 로고
    • Crop evapotranspiration guidelines for computing crop water requirements
    • FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome
    • Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome.
    • (1998)
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 3
    • 0000751991 scopus 로고
    • Evapotranspiration and irrigation water requirements
    • ASCE In M.E, Jensen, R.D. Burman and R.G. Allen (eds), American Society of Civil Engineers, New York
    • ASCE (1989). Evapotranspiration and irrigation water requirements. In ASCE Manuals and Reports on Engineering Practice M.E, Jensen, R.D. Burman and R.G. Allen (eds), vol 70, American Society of Civil Engineers, New York.
    • (1989) ASCE Manuals and Reports on Engineering Practice , vol.70
  • 6
    • 0032688155 scopus 로고    scopus 로고
    • River stage forecasting with a neural network model
    • Campolo, M., Andreussi, P. and Sodalt, A. (1999). River stage forecasting with a neural network model. Wat. Res. Res., 35(4), 1191-1197.
    • (1999) Wat. Res. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Sodalt, A.3
  • 7
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoǧlu, H.K. (2003a). Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol. Sci. J., 48(3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoǧlu, H.K.1
  • 8
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoǧlu, H.K. (2003b). Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics, 14(4), 417-427.
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoǧlu, H.K.1
  • 9
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H.K. and Kisi, O. (2005). Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrol., 36(1), 49-64.
    • (2005) Nordic Hydrol. , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, W.C. and Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J., 43(1), 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 11
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modeling for K-P interactions
    • El-Bakyr, M.Y. (2003). Feed forward neural networks modeling for K-P interactions. Chaos, Solitons Fractals, 18(5), 995-1000.
    • (2003) Chaos, Solitons Fractals , vol.18 , Issue.5 , pp. 995-1000
    • El-Bakyr, M.Y.1
  • 12
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher, R. and Reeves, C.M. (1964). Function minimization by conjugate gradients. Computer J., 7, 149-153.
    • (1964) Computer J. , vol.7 , pp. 149-153
    • Fletcher, R.1    Reeves, C.M.2
  • 13
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M.N., Krajewski, W.F. and Cuykendall, R.R. (1992). Rainfall forecasting in space and time using a neural network. J. Hydrol., 137, 1-37.
    • (1992) J. Hydrol. , vol.137 , pp. 1-37
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 14
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T. and Menhaj, M. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks, 5(6), 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 15
    • 0002370669 scopus 로고
    • Reference crop evapotranspiration from temperature
    • Hargreaves, G.H. and Samani, Z. (1985). Reference crop evapotranspiration from temperature. Appl. Engnh. Agric., 1(2), 96-99.
    • (1985) Appl. Engnh. Agric. , vol.1 , Issue.2 , pp. 96-99
    • Hargreaves, G.H.1    Samani, Z.2
  • 16
    • 0022073385 scopus 로고
    • Evaluating evapotranspiration at local and regional scales
    • Jackson, R.D. (1985). Evaluating evapotranspiration at local and regional scales. Proc. IEEE, 73(6), 1086-1096.
    • (1985) Proc. IEEE , vol.73 , Issue.6 , pp. 1086-1096
    • Jackson, R.D.1
  • 17
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S.K., Das, A. and Srivastava, D.K. (1999). Application of ANN for reservoir inflow prediction and operation. J. Wat. Res. Planning Mngmnt., 125(5), 263-271.
    • (1999) J. Wat. Res. Planning Mngmnt. , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 19
    • 0001938874 scopus 로고
    • Neural network and its application to rainfall-runoff forecasting
    • Kang, K.W., Park, C.Y. and Kim, J.H. (1993). Neural network and its application to rainfall-runoff forecasting. Korean J. Hydrosci., 4, 1-9.
    • (1993) Korean J. Hydrosci. , vol.4 , pp. 1-9
    • Kang, K.W.1    Park, C.Y.2    Kim, J.H.3
  • 20
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi, O. (2004). River flow modeling using artificial neural networks. ASCE J. Hydrol. Engng., 9(1), 60-63.
    • (2004) ASCE J. Hydrol. Engng. , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 21
    • 16344363303 scopus 로고    scopus 로고
    • Discussion of 'Estimating actual evapotranspiration from limited climatic data using neural computing technique' by K.P. Sudheer, A.K. Gosain and K.S. Ramasastri
    • Kisi, O. and Yildirim, G. (2005a). Discussion of 'Estimating actual evapotranspiration from limited climatic data using neural computing technique' by K.P. Sudheer, A.K. Gosain and K.S. Ramasastri. ASCE J. Irrig. Drain. Engng., 131(2), 219-220.
    • (2005) ASCE J. Irrig. Drain. Engng. , vol.131 , Issue.2 , pp. 219-220
    • Kisi, O.1    Yildirim, G.2
  • 22
    • 23044453569 scopus 로고    scopus 로고
    • Discussion of 'Forecasting of reference evapotranspiration by artificial neural networks' by S. Trajkovic; B. Todorovic; and M. Stankovic
    • Kisi, O. and Yildirim, G. (2005b). Discussion of 'Forecasting of reference evapotranspiration by artificial neural networks' by S. Trajkovic; B. Todorovic; and M. Stankovic. ASCE J. Irrig. Drain. Engng., 131(4), 390-391.
    • (2005) ASCE J. Irrig. Drain. Engng. , vol.131 , Issue.4 , pp. 390-391
    • Kisi, O.1    Yildirim, G.2
  • 24
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippman, R. (1987). An introduction to computing with neural nets. IEEE ASSP Mag., 4, 4-22.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippman, R.1
  • 25
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minnes, A.W. and Hall, M.J. (1996). Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J., 41(3), 399-416.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-416
    • Minnes, A.W.1    Hall, M.J.2
  • 28
    • 0037281781 scopus 로고    scopus 로고
    • Hydroinformatics in evapotranspiration estimation
    • Naoum and Tsanis (2003). Hydroinformatics in evapotranspiration estimation. Environ. Model. Software, 18, 261-271.
    • (2003) Environ. Model. Software , vol.18 , pp. 261-271
    • Naoum1    Tsanis2
  • 29
    • 84957790817 scopus 로고
    • Natural evaporation from open water, bare soil and grass
    • Series A
    • Penman, H.L. (1948). Natural evaporation from open water, bare soil and grass. Proc. Royal Soc., Series A, 193, 120-145.
    • (1948) Proc. Royal Soc. , vol.193 , pp. 120-145
    • Penman, H.L.1
  • 31
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H. and Sunilkumar, N. (1995). Multivariate modelling of water resources time series using artificial neural networks. J. Hydrol. Sci., 40(2), 145-163.
    • (1995) J. Hydrol. Sci. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 32
    • 0029656894 scopus 로고    scopus 로고
    • Use of artificial neural network in transient drainage design
    • Shukla, M.B., Kok, R., Prasher, S.O., Clark, G. and Lacroix, R. (1996). Use of artificial neural network in transient drainage design. Trans. ASAE, 39(1), 119-124.
    • (1996) Trans. ASAE , vol.39 , Issue.1 , pp. 119-124
    • Shukla, M.B.1    Kok, R.2    Prasher, S.O.3    Clark, G.4    Lacroix, R.5
  • 33
    • 0022167707 scopus 로고
    • Evaporation from sparse crops - An energy combination theory
    • Shuttleworth, W.J. and Wallace, J.S. (1985). Evaporation from sparse crops - an energy combination theory. Quart. J.R. Meteorol. Soc., 111, 839-855.
    • (1985) Quart. J.R. Meteorol. Soc. , vol.111 , pp. 839-855
    • Shuttleworth, W.J.1    Wallace, J.S.2
  • 35
    • 0031682830 scopus 로고    scopus 로고
    • Aquifer parameter estimation using genetic algorithm and neural networks
    • Srinivasa, L. (1998). Aquifer parameter estimation using genetic algorithm and neural networks. Civ. Environ. Eng. Syst., 15, 125-144.
    • (1998) Civ. Environ. Eng. Syst. , vol.15 , pp. 125-144
    • Srinivasa, L.1
  • 36
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer, K.P., Gosain, A.K. and Ramasastri, K.S. (2003). Estimating actual evapotranspiration from limited climatic data using neural computing technique. ASCE J. Irrig. Drain. Engng., 129(3) 214-218.
    • (2003) ASCE J. Irrig. Drain. Engng. , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 37
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaian, K. and Deo, M.C. (1998). River stage forecasting using artificial neural networks. J. Hydrol. Engng., 3(1), 26-32.
    • (1998) J. Hydrol. Engng. , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaian, K.1    Deo, M.C.2
  • 38
    • 0002048389 scopus 로고
    • An approach toward a rational classification of climate
    • Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geophys. Rev., 38(1), 55-94.
    • (1948) Geophys. Rev. , vol.38 , Issue.1 , pp. 55-94
    • Thornthwaite, C.W.1
  • 39
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A.S. and Johnson, P.A. (1999). Rainfall-runoff modeling using artificial neural networks. ASCE J. Hydrol. Engng., 4(3), 232-239.
    • (1999) ASCE J. Hydrol. Engng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 40
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting reference evapotranspiration by artificial neural networks
    • Trajkovic, S., Todorovic, B. and Stankovic, M. (2003). Forecasting reference evapotranspiration by artificial neural networks. ASCE J. Irrig. Drain. Engng., 129(6), 454-457.
    • (2003) ASCE J. Irrig. Drain. Engng. , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 41
    • 0032122269 scopus 로고    scopus 로고
    • The use of back- propagation neural networks for the simulation and analysis of time-series data in subsurface drainage system
    • Yang, C.C., Lacroix, R. and Prasher, S.O. (1998). The use of back- propagation neural networks for the simulation and analysis of time-series data in subsurface drainage system. Trans. ASAE, 41(4), 1181-1187.
    • (1998) Trans. ASAE , vol.41 , Issue.4 , pp. 1181-1187
    • Yang, C.C.1    Lacroix, R.2    Prasher, S.O.3
  • 42
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C.M., Burn, D.H. and Simonovic, S.P. (1999). Short term streamflow forecasting using artificial neural networks. J. Hydrol., 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.