-
2
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik V. An overview of statistical learning theory. IEEE Trans. Neural Networks 10 5 (1999) 988-999
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.1
-
3
-
-
34249753618
-
Support vector networks
-
Cortes C., and Vapnik V. Support vector networks. Mach. Learn. 20 (1995) 273-297
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
0031334889
-
-
E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: Proceedings of Neural Networks for Signal Processing, vol. VII, New York, USA, 1997.
-
E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in: Proceedings of Neural Networks for Signal Processing, vol. VII, New York, USA, 1997.
-
-
-
-
5
-
-
58249084095
-
-
J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods-Support Vector Machines, Cambridge, MA, USA, 1998.
-
J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods-Support Vector Machines, Cambridge, MA, USA, 1998.
-
-
-
-
6
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade S.K., Keerthi S.S., Bhattacharyya C., and Murthy K.R.K. Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Networks 11 5 (2000) 1188-1193
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
7
-
-
58249089384
-
-
T. Joachims, Making large-scale SVM learning practical, in: Advances in Kernel Methods-Support Vector Machine, Cambridge, MA, USA, 1999.
-
T. Joachims, Making large-scale SVM learning practical, in: Advances in Kernel Methods-Support Vector Machine, Cambridge, MA, USA, 1999.
-
-
-
-
8
-
-
0000913324
-
SVMTorch: support vector machines for large-scale regression problems
-
Collobert R., and Bengio S. SVMTorch: support vector machines for large-scale regression problems. J. Mach. Learn. 1 2 (2001) 143-160
-
(2001)
J. Mach. Learn.
, vol.1
, Issue.2
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
9
-
-
58249092708
-
-
C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, available from 〈http://www.csie.ntu.edu.tw/~cjlin〉.
-
C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, available from 〈http://www.csie.ntu.edu.tw/~cjlin〉.
-
-
-
-
10
-
-
0001260194
-
Exact simplification of support vector solutions
-
Downs T., Gates K., and Masters A. Exact simplification of support vector solutions. J. Mach. Learn. 2 2 (2002) 293-297
-
(2002)
J. Mach. Learn.
, vol.2
, Issue.2
, pp. 293-297
-
-
Downs, T.1
Gates, K.2
Masters, A.3
-
11
-
-
58249088226
-
-
Y.-J. Lee, O.L. Mangasarian, RSVM: reduced support vector machines, in: Proceedings of the First SIAM International Conference on Data Mining, 2001.
-
Y.-J. Lee, O.L. Mangasarian, RSVM: reduced support vector machines, in: Proceedings of the First SIAM International Conference on Data Mining, 2001.
-
-
-
-
12
-
-
0742321291
-
A study on reduced support vector machines
-
Lin K.M., and Lin C.J. A study on reduced support vector machines. IEEE Trans. Neural Networks 14 6 (2003) 1449-1459
-
(2003)
IEEE Trans. Neural Networks
, vol.14
, Issue.6
, pp. 1449-1459
-
-
Lin, K.M.1
Lin, C.J.2
-
13
-
-
33846092558
-
Reduced support vector machines: a statistical theory
-
Lee Y.J., and Huang S.Y. Reduced support vector machines: a statistical theory. IEEE Trans. Neural Networks 18 1 (2007) 1-13
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, Issue.1
, pp. 1-13
-
-
Lee, Y.J.1
Huang, S.Y.2
-
14
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., and Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 9 3 (1999) 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
15
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., and Vandewalle J. Least Squares Support Vector Machines (2002), World Scientific, Singapore
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
16
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen J., Dedene G., De Moor B., and Vandewalle J. Benchmarking least squares support vector machine classifiers. Mach. Learn. 16 2 (2004) 5-32
-
(2004)
Mach. Learn.
, vol.16
, Issue.2
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
17
-
-
58249084677
-
-
J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, J. Vandewalle, Least squares support vector machine classifiers: a large scale algorithm, in: Proceedings of the European Conference on Circuit Theory and Design, Torino, Italy, 1999.
-
J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, J. Vandewalle, Least squares support vector machine classifiers: a large scale algorithm, in: Proceedings of the European Conference on Circuit Theory and Design, Torino, Italy, 1999.
-
-
-
-
18
-
-
15344351150
-
An improved conjugate gradient method scheme to the solution of least squares SVM
-
Chu W., Ong C.J., and Keerthy S.S. An improved conjugate gradient method scheme to the solution of least squares SVM. IEEE Trans. Neural Networks 16 2 (2005) 498-501
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.2
, pp. 498-501
-
-
Chu, W.1
Ong, C.J.2
Keerthy, S.S.3
-
19
-
-
0037313407
-
SMO for least squares SVM formulations
-
Keerthi S.S., and Shevade S.K. SMO for least squares SVM formulations. Neural Comput. 15 2 (2003) 487-507
-
(2003)
Neural Comput.
, vol.15
, Issue.2
, pp. 487-507
-
-
Keerthi, S.S.1
Shevade, S.K.2
-
20
-
-
85117867000
-
-
J.A.K. Suykens, L. Lukas, J. Vandewalle, Sparse approximation using least square vector machines, in: 2000 IEEE International Symposium on Circuits and Systems, Lausanne, Switzerland, 2000.
-
J.A.K. Suykens, L. Lukas, J. Vandewalle, Sparse approximation using least square vector machines, in: 2000 IEEE International Symposium on Circuits and Systems, Lausanne, Switzerland, 2000.
-
-
-
-
21
-
-
0037507242
-
Pruning error minimization in least squares support vector machines
-
de Kruif B.J., and de Vries T.J.A. Pruning error minimization in least squares support vector machines. IEEE Trans. Neural Networks 14 3 (2004) 696-702
-
(2004)
IEEE Trans. Neural Networks
, vol.14
, Issue.3
, pp. 696-702
-
-
de Kruif, B.J.1
de Vries, T.J.A.2
-
22
-
-
28244453270
-
SMO-based pruning methods for sparse least squares support vector machines
-
Zeng X.Y., and Chen X.W. SMO-based pruning methods for sparse least squares support vector machines. IEEE Trans. Neural Networks 16 6 (2005) 1541-1546
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, Issue.6
, pp. 1541-1546
-
-
Zeng, X.Y.1
Chen, X.W.2
-
23
-
-
34047118751
-
Comments on "Pruning error minimization in least squares support vector machines"
-
Kuh A., and De Wilde P. Comments on "Pruning error minimization in least squares support vector machines". IEEE Trans. Neural Networks 18 2 (2007) 606-609
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, Issue.2
, pp. 606-609
-
-
Kuh, A.1
De Wilde, P.2
-
24
-
-
34248636293
-
Fast sparse approximation for least squares support vector machine
-
Jiao L., Bo L., and Wang L. Fast sparse approximation for least squares support vector machine. IEEE Trans. Neural Networks 18 3 (2007) 685-697
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, Issue.3
, pp. 685-697
-
-
Jiao, L.1
Bo, L.2
Wang, L.3
-
25
-
-
0036972152
-
Reduced rank kernel ridge regression
-
Cawley G.C., and Talbot N.L.C. Reduced rank kernel ridge regression. Neural Process. Lett. 16 3 (2002) 293-302
-
(2002)
Neural Process. Lett.
, vol.16
, Issue.3
, pp. 293-302
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
27
-
-
10044278059
-
-
Y. Zhao, K.C. Keong, Fast leave-one-out evaluation and improvement on inference for LS-SVMs, in: Proceedings of the 17th International Conference on Pattern Recognition, Los Alamitos, CA, USA, 2004.
-
Y. Zhao, K.C. Keong, Fast leave-one-out evaluation and improvement on inference for LS-SVMs, in: Proceedings of the 17th International Conference on Pattern Recognition, Los Alamitos, CA, USA, 2004.
-
-
-
-
28
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
An S., Liu W., and Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition 40 8 (2007) 2154-2162
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2154-2162
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
-
29
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J. Mach. Learn. Res. 5 (2004) 725-775
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
30
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., and Ma Y.Q. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.Q.2
-
31
-
-
58249089708
-
-
Available from 〈http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html〉.
-
Available from 〈http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html〉.
-
-
-
-
32
-
-
58249093319
-
-
Available from 〈http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html〉.
-
Available from 〈http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html〉.
-
-
-
|