메뉴 건너뛰기




Volumn , Issue , 2011, Pages 291-298

Evolving random boolean networks with genetic algorithms for regulatory networks reconstruction

Author keywords

Boolean network; Gene interactions; Gene regulatory network; Genetic algorithm; Reverse engineering

Indexed keywords

BIOLOGICAL EXPERIMENTS; BIOLOGICAL INFORMATION; BOOLEAN NETWORKS; CONSISTENT NETWORK; GENE INTERACTIONS; GENE REGULATORY NETWORKS; GENETIC REGULATORY NETWORKS; RANDOM BOOLEAN NETWORKS; REGULATORY NETWORK; TARGET GENES;

EID: 84860415026     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2001576.2001617     Document Type: Conference Paper
Times cited : (11)

References (21)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the boolean network model
    • K. S.
    • T. Akutsu, S. Miyano, and K. S. Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In Proceedings of the Pacific Symposium on Biocomputing, pages 17-28, 1999.
    • (1999) Proceedings of the Pacific Symposium on Biocomputing , pp. 17-28
    • Akutsu, T.1    Miyano, S.2
  • 3
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyse expression data
    • Mary Ann Liebert, Inc.
    • N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using bayesian networks to analyse expression data. In Journal of Computational Biology, volume 7, pages 601-620. Mary Ann Liebert, Inc., 2000.
    • (2000) Journal of Computational Biology , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 4
    • 68349161006 scopus 로고    scopus 로고
    • Reverse engineering of gene regulatory networks: A comparative study
    • Hindawi Publishing Corp.
    • H. Hache, H. Lehrach, and R. Herwig. Reverse engineering of gene regulatory networks: A comparative study. In EURASIP Journal on Bioinformatics and Systems Biology, volume 2009, pages 8:1-8:12. Hindawi Publishing Corp., 2009.
    • (2009) EURASIP Journal on Bioinformatics and Systems Biology , vol.2009 , pp. 81-812
    • Hache, H.1    Lehrach, H.2    Herwig, R.3
  • 5
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • March
    • S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 22(3):437-467, March 1969.
    • (1969) J Theor Biol , vol.22 , Issue.3 , pp. 437-467
    • Kauffman, S.A.1
  • 8
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the boolean network model
    • Kluwer Academic Publishers
    • H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory networks under the boolean network model. In Machine Learning, volume 52, pages 147-167. Kluwer Academic Publishers, 2003.
    • (2003) Machine Learning , vol.52 , pp. 147-167
    • Lähdesmäki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 9
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • S. Liang, S. Fuhrman, and R. Somogyi. REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In Proceedings of the Pacific Symposium on Biocomputing, volume 1998, pages 18-29, 1998.
    • (1998) Proceedings of the Pacific Symposium on Biocomputing , vol.1998 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 11
    • 33749005690 scopus 로고    scopus 로고
    • An efficient top-down search algorithm for learning Boolean networks of gene expression
    • DOI 10.1007/s10994-006-9014-z
    • D. Nam, S. Seo, and S. Kim. An efficient top-down search algorithm for learning boolean networks of gene expression. In Machine Learning, volume 65, pages 229-245. Springer Science, 2006. (Pubitemid 44451199)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 229-245
    • Nam, D.1    Seo, S.2    Kim, S.3
  • 12
    • 10244244945 scopus 로고    scopus 로고
    • Single-layer artificial neural networks for gene expression analysis
    • DOI 10.1016/j.neucom.2003.10.017, PII S0925231203005277
    • A. Narayanan, E. C. Keedwell, J. Gamalielsson, and S. Tatineni. Single-layer artificial neural networks for gene expression analysis. In Neurocomputing, volume 61, pages 217-240. Elsevier, 2004. (Pubitemid 39618378)
    • (2004) Neurocomputing , vol.61 , Issue.1-4 , pp. 217-240
    • Narayanan, A.1    Keedwell, E.C.2    Gamalielsson, J.3    Tatineni, S.4
  • 13
    • 32444432616 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using S-system and Differential Evolution
    • DOI 10.1145/1068009.1068079, GECCO 2005 - Genetic and Evolutionary Computation Conference
    • N. Noman and H. Iba. Inference of gene regulatory networks using s-system and differential evolution. In Proceedings of the 2005 Genetic and Evolutionary Computation Congress, pages 439-446. ACM, 2005. (Pubitemid 43226322)
    • (2005) GECCO 2005 - Genetic and Evolutionary Computation Conference , pp. 439-446
    • Noman, N.1    Iba, H.2
  • 15
    • 0036627676 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks: Simulation studies on a genetic algorithm approach for ranking hypotheses
    • DOI 10.1016/S0303-2647(02)00019-9, PII S0303264702000199
    • D. Repsilber, H. Liljenstrom, and A. S. G. E. Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses. In BioSystems, volume 66, pages 31-41. Elsevier, 2002. (Pubitemid 36169922)
    • (2002) BioSystems , vol.66 , Issue.1-2 , pp. 31-41
    • Repsilber, D.1    Liljenstrom, H.2    Andersson, S.G.E.3
  • 16
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • DOI 10.1126/science.1105809
    • K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger, and G. P. Nolan. Causal protein-signaling networks derived from multiparameter single-celldata. In Science, volume 308, pages 523-529. April 2005. (Pubitemid 40570578)
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 17
    • 77649176945 scopus 로고    scopus 로고
    • Comparison of evolutionary algorithms in gene regulatory network model inference
    • BioMed Central
    • A. Sîrbu, H. J. Ruskin, and M. Crane. Comparison of evolutionary algorithms in gene regulatory network model inference. In BMC Bioinformatics, volume 11, page 59. BioMed Central, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. 59
    • Sîrbu, A.1    Ruskin, H.J.2    Crane, M.3
  • 19
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • DOI 10.1093/bioinformatics/btl396
    • Y. Wang, T. Joshi, X. Zhang, D. Xu, and L. Chen. Inferring gene regulatory networks from multiple microarray datasets. In Bioinformatics, volume 22, pages 2413-2420. Oxford University Press, 2006. (Pubitemid 44566971)
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.-S.3    Xu, D.4    Chen, L.5
  • 20
    • 46049101810 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction by bayesian integration of prior knowledge and/or different experimental conditions
    • DOI 10.1142/S0219720008003539, PII S0219720008003539
    • A. V. Werhli and D. Husmeier. Gene regulatory network reconstruction by bayesian integration of prior knowledge and/or different experimental conditions. In Journal of Bioinformatics and Computational Biology, volume 6, pages 543-572. 2008. (Pubitemid 351895193)
    • (2008) Journal of Bioinformatics and Computational Biology , vol.6 , Issue.3 , pp. 543-572
    • Werhli, A.V.1    Husmeier, D.2
  • 21
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • DOI 10.1093/bioinformatics/btl364
    • W. Zhao, S. Erchin, and E. R. Dougherty. Inferring gene regulatory networks from time series data using the minimum description length principle. In Bioinformatics, volume 22, pages 2129-2135. 2006. (Pubitemid 44390904)
    • (2006) Bioinformatics , vol.22 , Issue.17 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.