메뉴 건너뛰기




Volumn 61, Issue 1-4, 2004, Pages 217-240

Single-layer artificial neural networks for gene expression analysis

Author keywords

Gene expression analysis; Perceptrons; Temporal gene networks

Indexed keywords

DATA REDUCTION; DRUG PRODUCTS; GENES; MICROSCOPIC EXAMINATION; RNA; TISSUE;

EID: 10244244945     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2003.10.017     Document Type: Article
Times cited : (35)

References (52)
  • 2
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Hawaii, USA
    • T. Akutsu S. Miyano, S. Kuhara, Identification of genetic networks from a small number of gene expression patterns under the Boolean network model, Pacific Symposium on Biocomputing, Vol. 4, Hawaii, USA, 1999, pp. 17-28.
    • (1999) Pacific Symposium on Biocomputing , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 3
    • 10244235139 scopus 로고    scopus 로고
    • Identifying the gene regulatory network by real-coded
    • variable length and multiple-stage GA, available from
    • S. Ando, H. Iba, Identifying the gene regulatory network by real-coded, variable length and multiple-stage GA, 2000, available from http://www.citeseer.nj.nec.com/333262.html.
    • (2000)
    • Ando, S.1    Iba, H.2
  • 4
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularised t-test and statistical inferences of gene change
    • Baldi P. Long A.D. A Bayesian framework for the analysis of microarray expression data: Regularised t-test and statistical inferences of gene change Bioinformatics 17 2001 509-519
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 6
    • 84880842521 scopus 로고    scopus 로고
    • Analysis of an associative memory neural network for pattern identification in gene expression data
    • Workshop on Data Mining in Bioinformatics (BIOKDD01) available from
    • S. Bicciato, M. Pandin, G.O. Didone, C. Di Bello, Analysis of an associative memory neural network for pattern identification in gene expression data, Workshop on Data Mining in Bioinformatics (BIOKDD01), available from http://www.cs.rpi.edu/~zaki/BIOKDD01.
    • Bicciato, S.1    Pandin, M.2    Didone, G.O.3    Di Bello, C.4
  • 7
    • 0029833943 scopus 로고    scopus 로고
    • A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1)
    • Bleul C.C. Fuhlbrigge R.C. Casasnovas J.M. Aiuti A. Springer T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) J. Exp. Med. 184 1996 1101-1110
    • (1996) J. Exp. Med. , vol.184 , pp. 1101-1110
    • Bleul, C.C.1    Fuhlbrigge, R.C.2    Casasnovas, J.M.3    Aiuti, A.4    Springer, T.A.5
  • 8
    • 0034714421 scopus 로고    scopus 로고
    • Gene expression data analysis
    • also available at
    • A. Brazma, J. Vilo, Gene expression data analysis, FEBS Lett. 480(1) (2000) 17-24, also available at http://industry.ebi.ac.uk/~vilo/Publications/ Febs_Brazma_Vilo_00023893.ps.gz.
    • (2000) FEBS Lett. , vol.480 , Issue.1 , pp. 17-24
    • Brazma, A.1    Vilo, J.2
  • 9
    • 10244220936 scopus 로고    scopus 로고
    • Analysis of gene expression microarrays for phenotype classification
    • available from
    • A. Califano, G. Stolovitzky, Y. Tu, Analysis of gene expression microarrays for phenotype classification, 2000, available from http://citeseer.nj.nec.com/califano00analysis.html.
    • (2000)
    • Califano, A.1    Stolovitzky, G.2    Tu, Y.3
  • 10
    • 0026075319 scopus 로고
    • The T cell activation antigen CD27 is a member of the nerve growth factor/tumour necrosis factor receptor gene family
    • Camerini D. Walz G. Loenen W.A. Borst J. Seed B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumour necrosis factor receptor gene family J. Immunol. 147 9 1991 3165-3169
    • (1991) J. Immunol. , vol.147 , Issue.9 , pp. 3165-3169
    • Camerini, D.1    Walz, G.2    Loenen, W.A.3    Borst, J.4    Seed, B.5
  • 11
    • 0032668662 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from experimental data
    • ACM-SIGAT The Third Annual International Conference on Computational Molecular Biology (RECOMB99) Lyon, France
    • T. Chen V. Filkov, S.S. Skiena Identifying gene regulatory networks from experimental data, ACM-SIGAT The Third Annual International Conference on Computational Molecular Biology (RECOMB99), Lyon, France, 2000, pp. 94-103.
    • (2000) , pp. 94-103
    • Chen, T.1    Filkov, V.2    Skiena, S.S.3
  • 13
    • 0033868516 scopus 로고    scopus 로고
    • High-producer haplotypes of tumour necrosis factor alpha and lymphtoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment
    • Davies F.E. Rollinson S.J. Rawstron A.C. Roman E. Richards S. Drayson M. Child J.A. Morgan G.J. High-producer haplotypes of tumour necrosis factor alpha and lymphtoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment J. Clin. Oncol. 18 15 2000 2843-2851
    • (2000) J. Clin. Oncol. , vol.18 , Issue.15 , pp. 2843-2851
    • Davies, F.E.1    Rollinson, S.J.2    Rawstron, A.C.3    Roman, E.4    Richards, S.5    Drayson, M.6    Child, J.A.7    Morgan, G.J.8
  • 14
    • 0003217215 scopus 로고    scopus 로고
    • Gene expression data analysis and modelling
    • available from www.cgl.ucsf.edu/psb/psb99/genetutorial.pdf
    • P. D'haeseleer, S. Liang, R. Somogyi R. Gene expression data analysis and modelling, 1999, available from www.cgl.ucsf.edu/psb/psb99/genetutorial.pdf.
    • (1999)
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.R.3
  • 15
    • 0033736476 scopus 로고    scopus 로고
    • Mining the gene expression matrix: Inferring gene relationships from large scale gene expression data
    • available from www.bioinformatics.oupjournals.org
    • P. D'haeseleer, X. Wen, Mining the gene expression matrix: Inferring gene relationships from large scale gene expression data, Bioinformatics 16 (8) (2000) 707-726, available from www.bioinformatics.oupjournals.org.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'haeseleer, P.1    Wen, X.2
  • 17
    • 0026058478 scopus 로고
    • Genomic structure of the human Ig lambda 1 gene suggests that it may be expressed as an Ig lambda 14.1-like protein or as a canonical B cell Ig lambda light chain: Implications for Ig lambda gene evolution
    • Evans R.J. Hollis G.F. Genomic structure of the human Ig lambda 1 gene suggests that it may be expressed as an Ig lambda 14.1-like protein or as a canonical B cell Ig lambda light chain: Implications for Ig lambda gene evolution J. Exp. Med. 173 2 1991 305-311
    • (1991) J. Exp. Med. , vol.173 , Issue.2 , pp. 305-311
    • Evans, R.J.1    Hollis, G.F.2
  • 19
    • 0037171745 scopus 로고    scopus 로고
    • Microarray technology: An array of opportunities
    • Gershon D. Microarray technology: An array of opportunities Nature 416 2002 885-891
    • (2002) Nature , vol.416 , pp. 885-891
    • Gershon, D.1
  • 21
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • J. Herrero A. Valencia, J. Dopazo, A hierarchical unsupervised growing neural network for clustering gene expression patterns, Bioinformatics 17(2) (2001) 126-136, http://citeseer.nj.nec.com/333262.html
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 27
    • 1842321684 scopus 로고
    • Cloning and sequence determination of the gene for the human immunoglobulin epsilon chain expressed in a myeloma cell line
    • Kenten J.H. Molgaard H.V. Houghton M. Derbyshire R.B. Viney J. Bell L.O. Gould H.J. Cloning and sequence determination of the gene for the human immunoglobulin epsilon chain expressed in a myeloma cell line Proc. Nat. Acad. Sci. USA 79 21 1982 6661-6665
    • (1982) Proc. Nat. Acad. Sci. USA , vol.79 , Issue.21 , pp. 6661-6665
    • Kenten, J.H.1    Molgaard, H.V.2    Houghton, M.3    Derbyshire, R.B.4    Viney, J.5    Bell, L.O.6    Gould, H.J.7
  • 29
    • 0027717083 scopus 로고
    • Immunoglobulin genes in chronic lymphocytic leukemia
    • Kipps T.J. Immunoglobulin genes in chronic lymphocytic leukemia Blood Cells 19 3 1993 15-25
    • (1993) Blood Cells , vol.19 , Issue.3 , pp. 15-25
    • Kipps, T.J.1
  • 30
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • Hawaii, USA
    • S. Liang, S. Fuhrman, R. Somogyi, REVEAL, a general reverse engineering algorithm for inference of genetic network architectures, Pacific Symposium on Biocomputing, Vol. 3, Hawaii, USA, 1998, pp. 18-29.
    • (1998) Pacific Symposium on Biocomputing , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 31
    • 0035221090 scopus 로고    scopus 로고
    • Development of a system for the inference of large scale genetic networks
    • Hawaii, USA, available from www-smi.stanford.edu/projects/helix/psb01/
    • Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, Y. Eguchi, Development of a system for the inference of large scale genetic networks, Proceedings of Pacific Symposium on Biocomputing, Vol. 6, Hawaii, USA, 2001, pp. 446-458, available from www-smi.stanford.edu/projects/helix/psb01/
    • (2001) Proceedings of Pacific Symposium on Biocomputing , vol.6 , pp. 446-458
    • Maki, Y.1    Tominaga, D.2    Okamoto, M.3    Watanabe, S.4    Eguchi, Y.5
  • 32
    • 0031616361 scopus 로고    scopus 로고
    • Cluster analysis and data visualisation of large-scale gene expression data
    • Hawaii, USA
    • G.S. Michaels, D.B. Carr, Cluster analysis and data visualisation of large-scale gene expression data, Pacific Symposium on Biocomputing, Vol. 3, Hawaii, USA, 1998, pp. 42-53.
    • (1998) Pacific Symposium on Biocomputing , vol.3 , pp. 42-53
    • Michaels, G.S.1    Carr, D.B.2
  • 33
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • Technical Report, Computer Science Division University of California, Berkeley, CA, available from
    • K. Murphy, S. Mian, Modelling gene expression data using dynamic Bayesian networks, Technical Report, Computer Science Division, University of California, Berkeley, CA, available from http://citeseer.nj.nec.com/murphy99modelling.html.
    • Murphy, K.1    Mian, S.2
  • 34
    • 2442685760 scopus 로고    scopus 로고
    • Artificial intelligence techniques for bioinformatics
    • Narayanan A. Keedwell E.C. Olsson B. Artificial intelligence techniques for bioinformatics Appl. Bioinform. 1 4 2002 191-22
    • (2002) Appl. Bioinform. , vol.1 , Issue.4 , pp. 191-222
    • Narayanan, A.1    Keedwell, E.C.2    Olsson, B.3
  • 35
    • 0033353292 scopus 로고    scopus 로고
    • Dimensionality reduction using a novel neural network based feature extraction method
    • Perantonis S.J. Virvilis V. Dimensionality reduction using a novel neural network based feature extraction method Neural Process. Lett. 10 3 1999 243-252
    • (1999) Neural Process. Lett. , vol.10 , Issue.3 , pp. 243-252
    • Perantonis, S.J.1    Virvilis, V.2
  • 36
    • 10244232734 scopus 로고    scopus 로고
    • Data mining tools See5 and C5.0
    • J.R. Quinlan, Data mining tools See5 and C5.0, 2000, http://www.rulequest.com/see5-info.html.
    • (2000)
    • Quinlan, J.R.1
  • 38
    • 0035999984 scopus 로고    scopus 로고
    • Binary analysis and optimisation-based normalization of gene expression data
    • Shmulevich I. Zhang W. Binary analysis and optimisation-based normalization of gene expression data Bioinformatics 18 4 2002 555-565
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 555-565
    • Shmulevich, I.1    Zhang, W.2
  • 39
    • 0344611758 scopus 로고    scopus 로고
    • Temporal boolean network models of genetic networks and their inference from gene expression time series
    • Silvescu A. Honavar V. Temporal boolean network models of genetic networks and their inference from gene expression time series Complex Syst. 13 2001 54-70
    • (2001) Complex Syst. , vol.13 , pp. 54-70
    • Silvescu, A.1    Honavar, V.2
  • 41
    • 0031635563 scopus 로고    scopus 로고
    • Modeling the normal and neoplastic cell cycle with 'realistic Boolean genetic networks': Their application for understanding carcinogenesis and assessing therapeutic strategies
    • Hawaii, USA
    • Z. Szallasi, S. Liang, Modeling the normal and neoplastic cell cycle with 'realistic Boolean genetic networks': Their application for understanding carcinogenesis and assessing therapeutic strategies. Pacific Symposium on Biocomputing, Vol. 3, Hawaii, USA, 1998, pp. 66-76.
    • (1998) Pacific Symposium on Biocomputing , vol.3 , pp. 66-76
    • Szallasi, Z.1    Liang, S.2
  • 43
    • 0042863923 scopus 로고    scopus 로고
    • Analysis of gene expression data using self-organising maps
    • Törönen P. Kolehmainen M. Wong G. Castrén E. Analysis of gene expression data using self-organising maps FEBS Lett. 451 1999 142-146
    • (1999) FEBS Lett. , vol.451 , pp. 142-146
    • Törönen, P.1    Kolehmainen, M.2    Wong, G.3    Castrén, E.4
  • 44
    • 3042673056 scopus 로고    scopus 로고
    • Gene expression, DNA arrays, and genetic networks
    • available from
    • J. Tsang, Gene expression, DNA arrays, and genetic networks, 1999, available from http://citeseer.nj.nec.com/tsang99gene.html.
    • (1999)
    • Tsang, J.1
  • 45
    • 4243812182 scopus 로고    scopus 로고
    • Robust genetic network modeling by adding noisy data
    • Proceedings of the 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP01) Baltimore, MD, June
    • E.P. van Someren, L.F.A Wessels, M.J.T. Reinders, E. Backer, Robust genetic network modeling by adding noisy data, in: Proceedings of the 2001 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP01), Baltimore, MD, June 2001.
    • (2001)
    • van Someren, E.P.1    Wessels, L.F.A.2    Reinders, M.J.T.3    Backer, E.4
  • 47
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory network
    • Wahde M. Hertz J. Coarse-grained reverse engineering of genetic regulatory network Biosystems 55 2000 129-136
    • (2000) Biosystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 50
    • 10244253789 scopus 로고    scopus 로고
    • Stromal-derived factor-1 chemokine gene polymorphism: Association with stem cell mobilisation and disease characteristics in multiple myeloma patients
    • available from
    • K. Wu, C.-K. Lee, B. Barlogie, M.A.S. Moore, Stromal-derived factor-1 chemokine gene polymorphism: Association with stem cell mobilisation and disease characteristics in multiple myeloma patients, 2001, available from http://myeloma.uams.edu/ASH/3073.htm.
    • (2001)
    • Wu, K.1    Lee, C.-K.2    Barlogie, B.3    Moore, M.A.S.4
  • 51
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees
    • Xu Y. Olman V. Xu D. Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees Bioinformatics 18 4 2001 536-545
    • (2001) Bioinformatics , vol.18 , Issue.4 , pp. 536-545
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 52
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung K.Y. Frayley C. Murua A. Model-based clustering and data transformations for gene expression data Bioinformatics 17 10 2001 977-987
    • (2001) Bioinformatics , vol.17 , Issue.10 , pp. 977-987
    • Yeung, K.Y.1    Frayley, C.2    Murua, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.