메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages 129-143

Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods

Author keywords

Class visualization; Classification; Fuzzy labeled self organizing map; Machine learning; Mass spectrometry; Vector quantization

Indexed keywords

ARTICLE; BREAST CANCER; CELL POPULATION; CLASSIFICATION ALGORITHM; COMPUTER PROGRAM; DATA ANALYSIS; DECISION SUPPORT SYSTEM; DISCRIMINANT ANALYSIS; FUZZY SYSTEM; GAS; HUMAN; LEARNING ALGORITHM; LINEAR SYSTEM; LISTERIA; LISTERIA GRAYI; LISTERIA INNOCUA; LISTERIA IVANOVII; LISTERIA MONOCYTOGENES; LISTERIA SEELIGERI; LISTERIA WELSHIMERI; LISTERIACEAE; MACHINE LEARNING; MASS SPECTROMETRY; MATHEMATICAL COMPUTING; MATRIX ASSISTED LASER DESORPTION IONIZATION TIME OF FLIGHT MASS SPECTROMETRY; NONHUMAN; PRINCIPAL COMPONENT ANALYSIS; PROTEOMICS; QUANTITATIVE ANALYSIS; TISSUE SECTION;

EID: 42049122152     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbn009     Document Type: Article
Times cited : (42)

References (50)
  • 1
    • 25144451767 scopus 로고    scopus 로고
    • Verleysen M, François D. the curse of dimensionality in data mining and time series prediction. In: Cabestany J, Prieto A, Hernández FS, (eds). Computational Intelligence and Bioinspired Systents, Proceedings of the 8th International Work-Conference on Artificial Neural Networks 2005 (IWANN). Barcelona, 758-70.
    • Verleysen M, François D. the curse of dimensionality in data mining and time series prediction. In: Cabestany J, Prieto A, Hernández FS, (eds). Computational Intelligence and Bioinspired Systents, Proceedings of the 8th International Work-Conference on Artificial Neural Networks 2005 (IWANN). Barcelona, 758-70.
  • 5
    • 79951615485 scopus 로고    scopus 로고
    • Neural networks and machine learning in bioinformatics - theory and applications
    • Verleysen M, ed, Brussels, Belgium: D-side publications
    • Seiffert U, Hammer B, Nord S, et al. Neural networks and machine learning in bioinformatics - theory and applications. In: Verleysen M, (ed) Proceedings of Euyropean Symposium on Artificial Neural Networks (ESANN'2006). Brussels, Belgium: D-side publications, 2006, 521-12.
    • (2006) Proceedings of Euyropean Symposium on Artificial Neural Networks (ESANN'2006) , pp. 521-612
    • Seiffert, U.1    Hammer, B.2    Nord, S.3
  • 7
    • 42049116396 scopus 로고    scopus 로고
    • Bishop C. Pattern Recognition and Machine Learning. New York: Spring Science+Buisiness Media LLC, 2006.
    • Bishop C. Pattern Recognition and Machine Learning. New York: Spring Science+Buisiness Media LLC, 2006.
  • 8
    • 33750308455 scopus 로고    scopus 로고
    • de Noo M, Deelder.A, van der Werff M, et al. MALDITOF serum protein profiling for detection of breast cancer. Onkologie 2006;29:501-6.
    • de Noo M, Deelder.A, van der Werff M, et al. MALDITOF serum protein profiling for detection of breast cancer. Onkologie 2006;29:501-6.
  • 9
    • 33646498929 scopus 로고    scopus 로고
    • Detecting of colorectal cancer using MALDI-TOF serum protein profiling
    • de Noo M, Martens B, özalp A, et al. Detecting of colorectal cancer using MALDI-TOF serum protein profiling. European Journal of Cancer 2006;42:1068-76.
    • (2006) European Journal of Cancer , vol.42 , pp. 1068-1076
    • de Noo, M.1    Martens, B.2    özalp, A.3
  • 10
    • 33845571066 scopus 로고    scopus 로고
    • Schleif F-M, Elssner T, Kostrzewa M, et al. Analysis and visualization of proteomic data by fuzzy labeled self-organizing maps. In: Lee D, Nutter B, Antani S, et al. (eds). 19th International Symposium on Computer- based Medical Systems Salt Lake City (CBMS). Los Alamitos: IEEE Computer Society Press, 2006;919-24.0769525171.
    • Schleif F-M, Elssner T, Kostrzewa M, et al. Analysis and visualization of proteomic data by fuzzy labeled self-organizing maps. In: Lee D, Nutter B, Antani S, et al. (eds). 19th International Symposium on Computer- based Medical Systems Salt Lake City (CBMS). Los Alamitos: IEEE Computer Society Press, 2006;919-24.0769525171.
  • 13
    • 42049095768 scopus 로고    scopus 로고
    • Kohonen T. Self-Organizing Maps, 30 of Springer Series in Information Sciences. Berlin, Heidelberg: Springer: 1995 (2nd edn. 1997).
    • Kohonen T. Self-Organizing Maps, Vol 30 of Springer Series in Information Sciences. Berlin, Heidelberg: Springer: 1995 (2nd edn. 1997).
  • 18
    • 0027632248 scopus 로고
    • Neural-gas' network for vector quantization and its application to time-series prediction
    • Martinetz TM, Berkovich SG, Schulten KJ. 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Trans on Neural Networks 1993;4(4): 558-69.
    • (1993) IEEE Trans on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 19
    • 33644899424 scopus 로고    scopus 로고
    • Magnification control in self-organizing maps and neural gas
    • February
    • Villmann T, Claussen J-C. Magnification control in self-organizing maps and neural gas. Neural Computation February 2006;18 2):446-69.
    • (2006) Neural Computation , vol.18 , Issue.2 , pp. 446-469
    • Villmann, T.1    Claussen, J.-C.2
  • 20
  • 21
    • 33745684650 scopus 로고    scopus 로고
    • Comparison of relevance learning vector quantization with other metric adaptive classification methods
    • Villmann T, Schleif F-M, Hammer B. Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 2006;19: 610-22.
    • (2006) Neural Networks , vol.19 , pp. 610-622
    • Villmann, T.1    Schleif, F.-M.2    Hammer, B.3
  • 22
    • 38049153181 scopus 로고    scopus 로고
    • Supervised neural gas for classification of functional data and its application to the analysis of clinical proteomic spectra
    • Sandoval F, Prieto A, Cabestany J, et al, eds, Computational and Ambient Intelligence, Proceedings of the 9th Work-conference on Artificial Neural Networks (IWANN, San Sebastian Spain, Berlin. Springer
    • Schleif F-M, Villmann T, Hammer B. Supervised neural gas for classification of functional data and its application to the analysis of clinical proteomic spectra. In: Sandoval F, Prieto A, Cabestany J, et al. (eds). Computational and Ambient Intelligence - Proceedings of the 9th Work-conference on Artificial Neural Networks (IWANN), San Sebastian (Spain) LNCS; 4507. Berlin. Springer, 2007;1036-44.
    • (2007) LNCS , vol.4507 , pp. 1036-1044
    • Schleif, F.-M.1    Villmann, T.2    Hammer, B.3
  • 24
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • Oja E, Kaski S, eds, Elsevier: Amsterdam
    • Heskes T. Energy functions for self-organizing maps. In: Oja E, Kaski S, (eds). Kohonen Maps. Elsevier: Amsterdam, 1999;303-16.
    • (1999) Kohonen Maps , pp. 303-316
    • Heskes, T.1
  • 26
    • 0031097231 scopus 로고    scopus 로고
    • Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement
    • Villmann T, Der R, Herrmann M, et al. Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 1997;8(2):256-66.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3
  • 27
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing feature maps
    • Bauer H-U, Pawelzik KR. Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Trans on Neural Networks 1992;3(4):570-9.
    • (1992) IEEE Trans on Neural Networks , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.R.2
  • 28
    • 0031101545 scopus 로고    scopus 로고
    • Growing a hypercubical output space in a self-organizing feature map
    • Bauer H-U, Villmann T. Growing a hypercubical output space in a self-organizing feature map. IEEE Transactions on Neural Networks 1997;8(2):218-26.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 218-226
    • Bauer, H.-U.1    Villmann, T.2
  • 29
    • 0344541989 scopus 로고    scopus 로고
    • Applications of the growing self-organizing map
    • Villmann T, Bauer H-U. Applications of the growing self-organizing map. Neurocomputing 1998;21(1-3):91-100.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 91-100
    • Villmann, T.1    Bauer, H.-U.2
  • 30
    • 38049108062 scopus 로고    scopus 로고
    • Fuzzy labeled self-organizing maps for classification of spectra
    • Sandoval F, Prieto A, Cabestany J, et al, eds, Computational and Ambient Intelligence, Proceedings of the 9th Work-conference on Artificial Neural Networks (IWANN, San Sebastian Spain, Berlin: Springer
    • Villmann T, Schleif F-M, Merényi E, et al. Fuzzy labeled self-organizing maps for classification of spectra. In: Sandoval F, Prieto A, Cabestany J, et al, (eds). Computational and Ambient Intelligence - Proceedings of the 9th Work-conference on Artificial Neural Networks (IWANN), San Sebastian (Spain) LNCS;4507. Berlin: Springer, 2007:556-63.
    • (2007) LNCS , vol.4507 , pp. 556-563
    • Villmann, T.1    Schleif, F.-M.2    Merényi, E.3
  • 31
    • 33749378695 scopus 로고    scopus 로고
    • Fuzzy labeled self-organizing map with label-adjusted prototypes
    • Schwenker F, Marinai S, eds, Proceedings of Conference Artificial Neural Networks in Pattern Recognition (ANNPR) 2006, Ulm, Germany, Berlin-Heidelberg: Springer Verlag
    • Villmann T, Seiffert U, Schleif F-M, et al. Fuzzy labeled self-organizing map with label-adjusted prototypes. In: Schwenker F, Marinai S, (eds). Proceedings of Conference Artificial Neural Networks in Pattern Recognition (ANNPR) 2006, Ulm, Germany LNAI; Vol. 4087. Berlin-Heidelberg: Springer Verlag, 2006:46-56.
    • (2006) LNAI , vol.4087 , pp. 46-56
    • Villmann, T.1    Seiffert, U.2    Schleif, F.-M.3
  • 32
    • 42049097312 scopus 로고    scopus 로고
    • Visualization of fuzzy information in fuzzy-classification for image segmentation using MDS
    • Verleysen M, ed, Brussels, Belgium: D-side publications
    • Villmann T, Strickert M, Bruß C, et al. Visualization of fuzzy information in fuzzy-classification for image segmentation using MDS. In: Verleysen M, (ed). Proceedings of European Symposium on Artificial Neural Networks (ESANN'2007). Brussels, Belgium: D-side publications, 2007;103-8.
    • (2007) Proceedings of European Symposium on Artificial Neural Networks (ESANN'2007) , pp. 103-108
    • Villmann, T.1    Strickert, M.2    Bruß, C.3
  • 35
    • 32544451159 scopus 로고    scopus 로고
    • Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis
    • March
    • Strickert M, Seifert U, Sreenivasulu N, et al. Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neurocomputing March 2006; 69(6-7):651-9.
    • (2006) Neurocomputing , vol.69 , Issue.6-7 , pp. 651-659
    • Strickert, M.1    Seifert, U.2    Sreenivasulu, N.3
  • 36
    • 34247228558 scopus 로고    scopus 로고
    • Swamidass S, Baldi P. Bounds and algorithms for fast exact searches of chemical fingerprints in linear and sublinear time. Journal of Chemical Information and Modeling 2007;47(2): 302-17.
    • Swamidass S, Baldi P. Bounds and algorithms for fast exact searches of chemical fingerprints in linear and sublinear time. Journal of Chemical Information and Modeling 2007;47(2): 302-17.
  • 37
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B, Villmann T. Generalized relevance learning vector quantization. Neural Networks 2002;15(8-9):1059-68.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 38
    • 42049092409 scopus 로고    scopus 로고
    • Fast and reliable MALDI-TOF MS-based microorganism identification
    • Maier T, Kostrzewa M. Fast and reliable MALDI-TOF MS-based microorganism identification. Chemistry Today 2007;45(2):68-71.
    • (2007) Chemistry Today , vol.45 , Issue.2 , pp. 68-71
    • Maier, T.1    Kostrzewa, M.2
  • 39
    • 33645507259 scopus 로고    scopus 로고
    • Fishing for biomarkers: Analyzing mass spectrometry data with the new clinprotools software
    • Ketterlinus R, Hsieh S-Y, Teng S-H, et al. Fishing for biomarkers: analyzing mass spectrometry data with the new clinprotools software. Biotechniques 2005;38(6):37-40.
    • (2005) Biotechniques , vol.38 , Issue.6 , pp. 37-40
    • Ketterlinus, R.1    Hsieh, S.-Y.2    Teng, S.-H.3
  • 41
    • 33847018143 scopus 로고    scopus 로고
    • Identifications of proteins directly from tissue: In situ tryptic digestions coupled with imaging mass spectrometry
    • Groseclose M, Andersson M, Hardesty W, et al. Identifications of proteins directly from tissue: In situ tryptic digestions coupled with imaging mass spectrometry. Journal of Mass Spectrometry 2007;42 254-62.
    • (2007) Journal of Mass Spectrometry , vol.42 , pp. 254-262
    • Groseclose, M.1    Andersson, M.2    Hardesty, W.3
  • 44
    • 42049086394 scopus 로고    scopus 로고
    • Chang C, Lin C. LIBSVM: A libary for support vector machines. Available at http://www.csie.ntu.edu.tw/-cjlin/libsvm 2001. (last accessed 3 December 2007).
    • Chang C, Lin C. LIBSVM: A libary for support vector machines. Available at http://www.csie.ntu.edu.tw/-cjlin/libsvm 2001. (last accessed 3 December 2007).
  • 45
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Tesauro G, Touretzky DS, Leen TK, eds, Cambridge MA: MIT Press
    • Fritzke B. A growing neural gas network learns topologies. In: Tesauro G, Touretzky DS, Leen TK, (eds). Advances in Neuralm Information Processing Systems 7. Cambridge MA: MIT Press, 1995;625-32.
    • (1995) Advances in Neuralm Information Processing Systems 7 , pp. 625-632
    • Fritzke, B.1
  • 47
    • 33748423524 scopus 로고    scopus 로고
    • Prototype-based fuzzy classification with local relevance for proteomics
    • October
    • Villmann T, Schleif F-M, Hammer B. Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing October 2006;69(16-18):2425-28.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2425-2428
    • Villmann, T.1    Schleif, F.-M.2    Hammer, B.3
  • 48
    • 0030537857 scopus 로고    scopus 로고
    • Smoothed functional principal components analysis by the choice of norm
    • Silverman B. Smoothed functional principal components analysis by the choice of norm. The Annals of Statistics 1996; 24(1):1-24.
    • (1996) The Annals of Statistics , vol.24 , Issue.1 , pp. 1-24
    • Silverman, B.1
  • 50
    • 69049098650 scopus 로고    scopus 로고
    • Sobolev metrics for learning of functional data - mathematical and theoretical aspects
    • ISSN
    • Villmann T. Sobolev metrics for learning of functional data - mathematical and theoretical aspects. Machine Learning Reports, 1(MIR-03-2007):1-15, 2007. ISSN:1865-3960, http://www.uni-leipzig.de/ ~compint/mlr/mlr_01_2007.pdf.
    • (2007) Machine Learning Reports, 1(MIR-03-2007):1-15 , pp. 1865-3960
    • Villmann, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.