메뉴 건너뛰기




Volumn , Issue , 2008, Pages 618-623

Reservoir inflow prediction using time lagged recurrent neural networks

Author keywords

Civil engineering; Hydrology; Reservoir inflow prediction; Time lagged recurrent network

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; ELECTRIC FAULT LOCATION; FORECASTING; LIGHTNING; MATHEMATICAL MODELS; NEURAL NETWORKS; RESERVOIRS (WATER); STANDARDS; TECHNOLOGY; TIME SERIES ANALYSIS;

EID: 51949119187     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICETET.2008.118     Document Type: Conference Paper
Times cited : (15)

References (25)
  • 2
    • 0017846358 scopus 로고
    • On a Measure of Lack of Fit in Time Series Models
    • G.M. Ljung, and G.E.P. Box, "On a Measure of Lack of Fit in Time Series Models", Biometrica, 1978, 65, pp. 297-303.
    • (1978) Biometrica , vol.65 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology-I: Preliminary concepts
    • ASCE
    • "Artificial Neural Networks in Hydrology-I: Preliminary concepts", Journal of Hydrologic Engineering, ASCE 2000a, 5(2), pp. 115-123.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology-II: Hydrologic applications
    • ASCE
    • "Artificial Neural Networks in Hydrology-II: Hydrologic applications", Journal of Hydrologic Engineering, ASCE. 2000b, 5(2), pp. 124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 7
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of Watershed Runoff using Bayesian Concepts and Modular Neural Networks
    • American Geophysical Union
    • B. Zhang, and R.S. Govindaraju, "Prediction of Watershed Runoff using Bayesian Concepts and Modular Neural Networks", Water Resources Research, American Geophysical Union, 2000, 36(3), pp. 753-762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2
  • 9
    • 0029413797 scopus 로고
    • Artificial Neural Network Modeling of the Rainfall-Runoff Process
    • K-L. Hsu, H.V. Gupta, and S. Sorooshian, "Artificial Neural Network Modeling of the Rainfall-Runoff Process", Water Resources Research, 1995, 31(10), pp. 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 10
    • 0033535432 scopus 로고    scopus 로고
    • A Nonlinear Rainfall-Runoff Model using Artificial Neural Network
    • Elsevier
    • N. Sajikumar, and B.S. Thandaveswara, "A Nonlinear Rainfall-Runoff Model using Artificial Neural Network", Journal of Hydrology, Elsevier, 1999, 216, pp. 32-55.
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 11
    • 0033019602 scopus 로고    scopus 로고
    • Short Term Streamflow Forecasting Using ANN
    • Elsevier
    • C.M. Zealand, D.H. Burn, and S.P. Simonovic, "Short Term Streamflow Forecasting Using ANN", Journal of Hydrology, Elsevier, 1999, 214, pp. 32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 12
    • 0037340658 scopus 로고    scopus 로고
    • Comparative Analysis of Event-Based Rainfall-Runoff Modeling Techniques - Deterministic, Statistical, and Artificial Neural Networks
    • A. Jain, and S.K.V. Indurthy, "Comparative Analysis of Event-Based Rainfall-Runoff Modeling Techniques - Deterministic, Statistical, and Artificial Neural Networks", Journal of Hydrologic Engineering, ASCE, 2003, 8(2), pp. 93-98.
    • (2003) Journal of Hydrologic Engineering, ASCE , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.2
  • 13
    • 0037197571 scopus 로고    scopus 로고
    • A Data-Driven Algorithm for Constructing Artificial Neural Network Rainfall-Runoff Models
    • Wiley InterScience
    • K.P. Sudheer, A.K. Gosain, K.S. Ramasastri, "A Data-Driven Algorithm for Constructing Artificial Neural Network Rainfall-Runoff Models", Hydrologic Processes, Wiley InterScience, (2002), 16(6), pp. 1325-1330.
    • (2002) Hydrologic Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 14
    • 33644636765 scopus 로고    scopus 로고
    • A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Modeling
    • Elsevier
    • S. Srinivasulu, and A. Jain, "A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Modeling", Journal of Applied Soft Computing, Elsevier, (2006), 6(3), pp. 295-306.
    • (2006) Journal of Applied Soft Computing , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 17
    • 34248202148 scopus 로고    scopus 로고
    • Artificial Neural Network Model for Synthetic Streamflow Generation
    • Springer, DOI 10.1007/s11269-006-9070-y
    • J. Ahmed, and A.K. Sarma, "Artificial Neural Network Model for Synthetic Streamflow Generation", Water Resource Management, Springer 2006, DOI 10.1007/s11269-006-9070-y.
    • (2006) Water Resource Management
    • Ahmed, J.1    Sarma, A.K.2
  • 19
    • 0034621379 scopus 로고    scopus 로고
    • Daily Reservoir Inflow Forecasting using Artificial Neural Networks with Stopped Training Approach
    • Elsevier
    • P. Coulibaly, F. Anctil, and B. Bobee, "Daily Reservoir Inflow Forecasting using Artificial Neural Networks with Stopped Training Approach", Journal of Hydrology, Elsevier, 2000, 230, pp. 244-257.
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 23
    • 0037470339 scopus 로고    scopus 로고
    • Improving Peak Flow Estimates in Artificial Neural Network in River Flow Models
    • Wiley InterScience
    • K.P. Sudheer, P.C. Nayak, and K.S. Ramasastri, "Improving Peak Flow Estimates in Artificial Neural Network in River Flow Models", Hydrological Processes, Wiley InterScience, 2003, 17, pp. 677-686.
    • (2003) Hydrological Processes , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 25
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid Neural Network Models for Hydrologic Time Series Forecasting
    • Elsevier, doi: 10.1016/j.asoc.2006.03.002
    • A. Jain, and A. Madhav Kumar, "Hybrid Neural Network Models for Hydrologic Time Series Forecasting", Applied Soft Computing, Elsevier, (2006), doi: 10.1016/j.asoc.2006.03.002.
    • (2006) Applied Soft Computing
    • Jain, A.1    Madhav Kumar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.