메뉴 건너뛰기




Volumn 12, Issue 6, 2012, Pages 1787-1800

Evolutionary Generalized Radial Basis Function neural networks for improving prediction accuracy in gene classification using feature selection

Author keywords

Evolutionary algorithm; Feature selection; Gene classification; Generalized Gaussian Distribution; Generalized Radial Basis Function

Indexed keywords

BIOMEDICAL DOMAIN; FUNCTION APPROXIMATION; GENE CLASSIFICATION; GENERALIZED GAUSSIAN DISTRIBUTION; GENERALIZED GAUSSIAN DISTRIBUTIONS; GRADIENT-BASED LEARNING; HYBRID ALGORITHMS; HYBRID APPROACH; INPUT VARIABLES; MICROARRAY DATA; PATTERN RECOGNITION PROBLEMS; PREDICTION ACCURACY; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; SHAPE PARAMETERS; SIX GENES;

EID: 84859620273     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.01.008     Document Type: Article
Times cited : (73)

References (54)
  • 1
    • 0029375452 scopus 로고
    • Learning and generalization in radial basis function networks
    • Freeman J.A.S., and Saad D. Learning and generalization in radial basis function networks Neural Computation 7 5 1995 1000 1020
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 1000-1020
    • Freeman, J.A.S.1    Saad, D.2
  • 5
    • 80955178270 scopus 로고    scopus 로고
    • MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
    • Fernández-Navarro F., Hervás-Martínez C., Sánchez-Monedero J., and Gutierrez P.A. MELM-GRBF: a modified version of the extreme learning machine for generalized radial basis function neural networks Neurocomputing 74 16 2011 2502 2510
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2502-2510
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Sánchez-Monedero, J.3    Gutierrez, P.A.4
  • 6
    • 77950036364 scopus 로고    scopus 로고
    • On the versatility of radial basis function neural networks: A case study in the field of intrusion detection
    • Fisch D., Hofmann A., and Sick B. On the versatility of radial basis function neural networks: a case study in the field of intrusion detection Information Sciences 180 12 2010 2421 2439
    • (2010) Information Sciences , vol.180 , Issue.12 , pp. 2421-2439
    • Fisch, D.1    Hofmann, A.2    Sick, B.3
  • 7
    • 79951853422 scopus 로고    scopus 로고
    • Evolutionary q-Gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus
    • Fernández-Navarro F., Hervás-Martínez C., Cruz M., Gutierrez P.A., and Valero A. Evolutionary q-Gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus Applied Soft Computing 11 3 2011 3012 3020
    • (2011) Applied Soft Computing , vol.11 , Issue.3 , pp. 3012-3020
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Cruz, M.3    Gutierrez, P.A.4    Valero, A.5
  • 8
    • 79960893968 scopus 로고    scopus 로고
    • Evolutionary q-Gaussian radial basis functions neural networks for multi-classification
    • Fernández-Navarro F., Hervás-Martínez C., Gutierrez P.A., and Carboreno M. Evolutionary q-Gaussian radial basis functions neural networks for multi-classification Neural Networks 24 7 2011 779 784 URL http://dx.doi.org/10.1016/j.neunet.2011.03.014
    • (2011) Neural Networks , vol.24 , Issue.7 , pp. 779-784
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutierrez, P.A.3    Carboreno, M.4
  • 9
    • 82455199144 scopus 로고    scopus 로고
    • Parameter estimation of q-Gaussian radial basis functions neural networks with a hybrid algorithm for binary classification
    • Fernández-Navarro F., Hervás-Martínez C., Gutierrez P.A., Peña J., and López-Granados F. Parameter estimation of q-Gaussian radial basis functions neural networks with a hybrid algorithm for binary classification Neurocomputing 75 2012 123 134
    • (2012) Neurocomputing , vol.75 , pp. 123-134
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutierrez, P.A.3    Peña, J.4    López-Granados, F.5
  • 10
    • 27644596506 scopus 로고    scopus 로고
    • A generalized normal distribution
    • DOI 10.1080/02664760500079464
    • Nadarajah S. A generalized normal distribution Journal of Applied Statistics 32 7 2005 685 694 (Pubitemid 41576633)
    • (2005) Journal of Applied Statistics , vol.32 , Issue.7 , pp. 685-694
    • Nadarajah, S.1
  • 11
    • 57149099159 scopus 로고    scopus 로고
    • Growing enzyme gene networks by integration of gene expression, motif sequence, and metabolic information
    • Geng B., Zhou X., and Hung Y.S. Growing enzyme gene networks by integration of gene expression, motif sequence, and metabolic information Pattern Recognition 42 4 2009 557 561
    • (2009) Pattern Recognition , vol.42 , Issue.4 , pp. 557-561
    • Geng, B.1    Zhou, X.2    Hung, Y.S.3
  • 12
    • 77649237177 scopus 로고    scopus 로고
    • Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction
    • Wang S., Li X., Zhang S., Gui J., and Huang D. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction Computers in Biology and Medicine 40 2 2009 179 189
    • (2009) Computers in Biology and Medicine , vol.40 , Issue.2 , pp. 179-189
    • Wang, S.1    Li, X.2    Zhang, S.3    Gui, J.4    Huang, D.5
  • 14
    • 77957928626 scopus 로고    scopus 로고
    • Cohesion: A concept and framework for confident association discovery with potential application in microarray mining
    • Bhattacharyya R. Cohesion: a concept and framework for confident association discovery with potential application in microarray mining Applied Soft Computing 11 1 2011 592 604
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 592-604
    • Bhattacharyya, R.1
  • 15
    • 79956070450 scopus 로고    scopus 로고
    • Analysis of gene microarray data in a soft computing framework
    • Maulik U. Analysis of gene microarray data in a soft computing framework Applied Soft Computing 11 6 2011 4152 4160
    • (2011) Applied Soft Computing , vol.11 , Issue.6 , pp. 4152-4160
    • Maulik, U.1
  • 16
    • 77957901392 scopus 로고    scopus 로고
    • A novel hybrid feature selection method for microarray data analysis
    • Lee C.-P., and Leu Y. A novel hybrid feature selection method for microarray data analysis Applied Soft Computing 11 1 2011 208 213
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 208-213
    • Lee, C.-P.1    Leu, Y.2
  • 17
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • Blum A., and Langley P. Selection of relevant features and examples in machine learning Artificial Intelligence 97 1-2 1997 245 271 (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 19
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy Journal of Machine Learning Research 5 2004 1205 1224
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 20
    • 33748416594 scopus 로고    scopus 로고
    • Incremental wrapper-based gene selection from microarray data for cancer classification
    • DOI 10.1016/j.patcog.2005.11.001, PII S0031320305004140, Bioinformatics
    • Ruiz R., Riquelme J., and Aguilar-Ruiz J. Incremental wrapper-based gene selection from microarray expression data for cancer classification Pattern Recognition 39 2006 2383 2392 (Pubitemid 44344733)
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2383-2392
    • Ruiz, R.1    Riquelme, J.C.2    Aguilar-Ruiz, J.S.3
  • 23
    • 33749267856 scopus 로고    scopus 로고
    • Logistic regression using covariates obtained by product-unit neural network models
    • DOI 10.1016/j.patcog.2006.06.003, PII S0031320306002755
    • Hervás-Martínez C., and Martínez-Estudillo F. Logistic regression using covariates obtained by product-unit neural network models Pattern Recognition 40 1 2007 52 64 (Pubitemid 44486291)
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 52-64
    • Hervas-Martinez, C.1    Martinez-Estudillo, F.2
  • 24
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • DOI 10.1016/S0925-2312(01)00700-7, PII S0925231201007007
    • Igel C., and Hüsken M. Empirical evaluation of the improved rprop learning algorithms Neurocomputing 50 6 2003 105 123 (Pubitemid 36131033)
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Husken, M.2
  • 25
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • Bell D., and Wang H. A formalism for relevance and its application in feature subset selection Machine Learning 41 2 2000 175 195
    • (2000) Machine Learning , vol.41 , Issue.2 , pp. 175-195
    • Bell, D.1    Wang, H.2
  • 27
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann, San Francisco, CA
    • Hall M. Correlation-based feature selection for discrete and numeric class machine learning Proceedings of the 17th International Conference on Machine Learning Morgan Kaufmann, San Francisco, CA 2000 359 366
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 359-366
    • Hall, M.1
  • 29
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • le Cessie S., and van Houwelingen J. Ridge estimators in logistic regression Applied Statistics 41 1 1992 191 201
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.2
  • 30
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • DOI 10.1007/s10994-005-0466-3
    • Landwehr N., Hall M., and Frank E. Logistic model trees Machine Learning 59 1-2 2005 161 205 (Pubitemid 40890416)
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 32
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • Aha D.W., Kibler D., and Albert M.K. Instance-based learning algorithms Machine Learning 6 1 1991 37 66 (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha David, W.1    Kibler Dennis2    Albert Marc, K.3
  • 36
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings Annals of Mathematical Statistics 11 1 1940 86 92
    • (1940) Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 46
    • 24044488957 scopus 로고    scopus 로고
    • Biomarker discovery in microarray gene expression data with Gaussian processes
    • DOI 10.1093/bioinformatics/bti526
    • Chu W., Ghahramani Z., Falciani F., and Wild D.L. Biomarker discovery in microarray gene expression data with Gaussian processes Bioinformatics 21 16 2005 3385 3393 (Pubitemid 41222443)
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3385-3393
    • Chu, W.1    Ghahramani, Z.2    Falciani, F.3    Wild, D.L.4
  • 47
  • 48
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data
    • Furlanello C., Serafini M., Merler S., and Jurman G. Entropy-Based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data BMC Bioinformatics (4) 2003 54
    • (2003) BMC Bioinformatics (4) , pp. 54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 50
    • 34447560963 scopus 로고    scopus 로고
    • Statistical redundancy testing for improved gene selection in cancer classification using microarray data
    • Hu R.J.S. Statistical redundancy testing for improved gene selection in cancer classification using microarray data Cancer Informatics 3 2007 29 41
    • (2007) Cancer Informatics , vol.3 , pp. 29-41
    • Hu, R.J.S.1
  • 52
    • 36048978462 scopus 로고    scopus 로고
    • Selecting differentially expressed genes using minimum probability of classification error
    • DOI 10.1016/j.jbi.2007.07.006, PII S1532046407000792, Intelligent Data Analysis in Biomedicine
    • Mahata P., and Mahata K. Selecting differentially expressed genes using minimum probability of classification error Journal of Biomedical Informatics 40 6 2007 775 786 (Pubitemid 350088626)
    • (2007) Journal of Biomedical Informatics , vol.40 , Issue.6 , pp. 775-786
    • Mahata, P.1    Mahata, K.2
  • 53
    • 39449117013 scopus 로고    scopus 로고
    • Proposal of new gene filtering method, BagPART, for gene expression analysis with small sample
    • DOI 10.1263/jbb.105.81, PII S1389172308700318
    • Kawamura T., Takahashi H., and Honda H. Proposal of new gene filtering method, bagpart, for gene expression analysis with small sample Journal of Bioscience and Bioengineering 105 1 2008 81 84 (Pubitemid 351273671)
    • (2008) Journal of Bioscience and Bioengineering , vol.105 , Issue.1 , pp. 81-84
    • Kawamura, T.1    Takahashi, H.2    Honda, H.3
  • 54
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • 0017.1-0017.11
    • Hellem T., and Jonassen I. New feature subset selection procedures for classification of expression profiles Genome Biology 3 4 2002 0017.1-0017.11
    • (2002) Genome Biology , vol.3 , Issue.4
    • Hellem, T.1    Jonassen, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.