메뉴 건너뛰기




Volumn 39, Issue 9, 2012, Pages 7776-7787

Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays

Author keywords

Hard turning; RBF neural networks; Surface roughness; Taguchi methods

Indexed keywords

DESIGN FACTORS; DESIGN OF EXPERIMENTS (DOE); DESIGN PARAMETERS; DIFFERENT SIZES; HARD TURNING; HARD TURNING PROCESS; HARDENED STEEL; NETWORK DESIGN; ORTHOGONAL ARRAY; RADIAL BASE FUNCTION; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL FUNCTIONS; RBF NEURAL NETWORK; SPREAD FACTORS; TAGUCHI; TRAINING SETS; TRIAL-AND-ERROR APPROACH; TURNING PROCESS;

EID: 84858332972     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.01.058     Document Type: Article
Times cited : (98)

References (43)
  • 1
    • 34248198328 scopus 로고    scopus 로고
    • Predictive machinability models for a selected hard material in turning operations
    • A.M.A. Al-Ahmari Predictive machinability models for a selected hard material in turning operations Journal of Materials Processing Technology 190 2007 305 311
    • (2007) Journal of Materials Processing Technology , vol.190 , pp. 305-311
    • Al-Ahmari, A.M.A.1
  • 2
    • 33750317589 scopus 로고    scopus 로고
    • Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN
    • E. Bagci, and B. Isik Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN International Journal of Advanced Manufacturing Technology 31 2006 10 17
    • (2006) International Journal of Advanced Manufacturing Technology , vol.31 , pp. 10-17
    • Bagci, E.1    Isik, B.2
  • 3
    • 58149472216 scopus 로고    scopus 로고
    • Design of experiments on neural network's training for nonlinear time series forecasting
    • P.P. Balestrassi, E. Popova, A.P. Paiva, and J.W.M. Lima Design of experiments on neural network's training for nonlinear time series forecasting Neurocomputing 72 2009 1160 1178
    • (2009) Neurocomputing , vol.72 , pp. 1160-1178
    • Balestrassi, P.P.1    Popova, E.2    Paiva, A.P.3    Lima, J.W.M.4
  • 5
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
    • P.G. Benardos, and G.C. Vosniakos Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments Robotics and Computer Integrated Manufacturing 18 2002 343 354
    • (2002) Robotics and Computer Integrated Manufacturing , vol.18 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 9
    • 42949106000 scopus 로고    scopus 로고
    • A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
    • U. aydas, and A. Hasalik A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method Journal of Materials Processing Technology 202 2008 574 582
    • (2008) Journal of Materials Processing Technology , vol.202 , pp. 574-582
    • Aydas, U.1    Hasalik, A.2
  • 10
    • 80052115365 scopus 로고    scopus 로고
    • Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach
    • H. Chen, J. Lin, Y. Yang, and C. Tsai Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach Expert Systems with Applications 37 2010 7147 7153
    • (2010) Expert Systems with Applications , vol.37 , pp. 7147-7153
    • Chen, H.1    Lin, J.2    Yang, Y.3    Tsai, C.4
  • 12
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
    • M. Correa, C. Bielza, and J. Pamies-Teixeira Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process Expert Systems with Applications 36 3 2009 7270 7279
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 7270-7279
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 13
    • 33644749301 scopus 로고    scopus 로고
    • Approach to optimization of cutting conditions by using artificial neural networks
    • F. Cus, and U. Zuperl Approach to optimization of cutting conditions by using artificial neural networks Journal of Materials Processing Technology 173 2006 281 290
    • (2006) Journal of Materials Processing Technology , vol.173 , pp. 281-290
    • Cus, F.1    Zuperl, U.2
  • 14
    • 44749086674 scopus 로고    scopus 로고
    • Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
    • J.P. Davim, V.N. Gaitonde, and S.R. Karnik Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models Journal of Materials Processing Technology 205 2008 16 23
    • (2008) Journal of Materials Processing Technology , vol.205 , pp. 16-23
    • Davim, J.P.1    Gaitonde, V.N.2    Karnik, S.R.3
  • 16
    • 79952919474 scopus 로고    scopus 로고
    • A hybrid approach for multi-performance optimization of the electro-chemical honing process
    • 10.1007/s00170-008-1422-8
    • A.K. Dubey A hybrid approach for multi-performance optimization of the electro-chemical honing process International Journal of Advanced Manufacturing Technology 2009 10.1007/s00170-008-1422-8
    • (2009) International Journal of Advanced Manufacturing Technology
    • Dubey, A.K.1
  • 18
    • 33750356120 scopus 로고    scopus 로고
    • Comparison of response surface model with neural network in determining the surface quality of moulded parts
    • T. Erzurumlu, and H. Oktem Comparison of response surface model with neural network in determining the surface quality of moulded parts Materials and Design 28 2007 459 465
    • (2007) Materials and Design , vol.28 , pp. 459-465
    • Erzurumlu, T.1    Oktem, H.2
  • 19
    • 33750319478 scopus 로고    scopus 로고
    • Ground surface roughness prediction based upon experimental design and neural network models
    • N.B. Fredj, and R. Amamou Ground surface roughness prediction based upon experimental design and neural network models International Journal of Advanced Manufacturing Technology 31 2006 24 36
    • (2006) International Journal of Advanced Manufacturing Technology , vol.31 , pp. 24-36
    • Fredj, N.B.1    Amamou, R.2
  • 22
    • 62949132164 scopus 로고    scopus 로고
    • Prediction and control of surface roughness in CNC lathe using artificial neural network
    • D. Karayel Prediction and control of surface roughness in CNC lathe using artificial neural network Journal of Materials Processing Technology 209 2009 3125 3137
    • (2009) Journal of Materials Processing Technology , vol.209 , pp. 3125-3137
    • Karayel, D.1
  • 24
    • 38349091129 scopus 로고    scopus 로고
    • Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization
    • Y. Karpat, and T. Özel Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization International Journal of Advanced Manufacturing Technology 35 2008 234 247
    • (2008) International Journal of Advanced Manufacturing Technology , vol.35 , pp. 234-247
    • Karpat, Y.1    Özel, T.2
  • 25
    • 0029278204 scopus 로고
    • Optimal design of neural networks using the Taguchi method
    • J.F.C. Khaw, B.S. Lim, and L.E.N. Lim Optimal design of neural networks using the Taguchi method Neurocomputing 7 1995 225 245
    • (1995) Neurocomputing , vol.7 , pp. 225-245
    • Khaw, J.F.C.1    Lim, B.S.2    Lim, L.E.N.3
  • 26
    • 77951207681 scopus 로고    scopus 로고
    • Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite
    • E. Kilickap Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite Expert Systems with Applications 37 2010 6116 6122
    • (2010) Expert Systems with Applications , vol.37 , pp. 6116-6122
    • Kilickap, E.1
  • 27
    • 84858337601 scopus 로고    scopus 로고
    • Robust design of multilayer feedforward neural networks: An experimental approach
    • Y.S. Kim, and B.J. Yum Robust design of multilayer feedforward neural networks: An experimental approach Engineering Applications of Artificial Intelligence 38 2003 1 15
    • (2003) Engineering Applications of Artificial Intelligence , vol.38 , pp. 1-15
    • Kim, Y.S.1    Yum, B.J.2
  • 28
    • 11144328104 scopus 로고    scopus 로고
    • A neural-network-based methodology for the prediction of surface roughness in a turning process
    • U. Kohli, and D. Dixit A neural-network-based methodology for the prediction of surface roughness in a turning process International Journal of Advanced Manufacturing Technology 25 2005 118 129
    • (2005) International Journal of Advanced Manufacturing Technology , vol.25 , pp. 118-129
    • Kohli, U.1    Dixit, D.2
  • 30
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
    • T. Özel, and Y. Karpat Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks International Journal of Machine Tools and Manufacture 45 2005 467 479
    • (2005) International Journal of Machine Tools and Manufacture , vol.45 , pp. 467-479
    • Özel, T.1    Karpat, Y.2
  • 33
    • 42649138966 scopus 로고    scopus 로고
    • Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
    • R. Quiza, L. Figueira, and J.P. Davim Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel International Journal of Advanced Manufacturing Technology 37 2008 641 648
    • (2008) International Journal of Advanced Manufacturing Technology , vol.37 , pp. 641-648
    • Quiza, R.1    Figueira, L.2    Davim, J.P.3
  • 35
    • 84858340966 scopus 로고    scopus 로고
    • Sandvik Coromant Sandviken: Elanders
    • Sandvik Coromant (2010). Cutting tools-Main catalogue. Sandviken: Elanders.
    • (2010) Cutting Tools-Main Catalogue
  • 36
    • 46249124721 scopus 로고    scopus 로고
    • Estimation of cutting forces and surface roughness for hard turning using neural networks
    • V.S. Sharma, S. Dhiman, R. Sehgal, and S.K. Sharma Estimation of cutting forces and surface roughness for hard turning using neural networks Journal of Intelligent Manufacturing 19 2008 473 483
    • (2008) Journal of Intelligent Manufacturing , vol.19 , pp. 473-483
    • Sharma, V.S.1    Dhiman, S.2    Sehgal, R.3    Sharma, S.K.4
  • 37
    • 43449124733 scopus 로고    scopus 로고
    • Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis neural network
    • J.R. Shie Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis neural network International Journal of Advanced Manufacturing Technology 36 2008 1091 1103
    • (2008) International Journal of Advanced Manufacturing Technology , vol.36 , pp. 1091-1103
    • Shie, J.R.1
  • 38
    • 0036664145 scopus 로고    scopus 로고
    • On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research
    • B. Sick On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research Mechanical Systems and Signal Processing 16 2002 487 546
    • (2002) Mechanical Systems and Signal Processing , vol.16 , pp. 487-546
    • Sick, B.1
  • 40
    • 29344436678 scopus 로고    scopus 로고
    • The application of a radial basis function neural network for predicting the surface roughness in a turning process
    • D.K. Sonar, U.S. Dixit, and D.K. Ohja The application of a radial basis function neural network for predicting the surface roughness in a turning process International Journal of Advanced Manufacture Technology 27 2006 661 666
    • (2006) International Journal of Advanced Manufacture Technology , vol.27 , pp. 661-666
    • Sonar, D.K.1    Dixit, U.S.2    Ohja, D.K.3
  • 42
    • 71749087451 scopus 로고    scopus 로고
    • Prediction of surface roughness in the end milling machining using artificial neural network
    • A.M. Zain, H. Haron, and S. Sharif Prediction of surface roughness in the end milling machining using artificial neural network Expert Systems with Applications 37 2010 1755 1768
    • (2010) Expert Systems with Applications , vol.37 , pp. 1755-1768
    • Zain, A.M.1    Haron, H.2    Sharif, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.