-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., Kohavi, R, 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Blake, C.L., Merz, C.J, 1998. UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science. (www.ics.uci.edu/~mlearn/MLRepository.html)
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L, 1996. Bagging Predictors. Machine Learning 24, 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler, J., Roli, F., eds. Multiple Classifier Systems, Springer
-
Dietterich, T.G, 2001. Ensemble methods in machine learning. In Kittler, J., Roli, F., eds. Multiple Classifier Systems. LNCS Vol. 1857, Springer, 1-15.
-
(2001)
LNCS
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
5
-
-
65449131755
-
Is combining classifiers better than selecting the best one
-
Dzeroski, S., Zenko, B., 2002. Is Combining Classifiers Better than Selecting the Best One. ICML 2002: 123130.
-
(2002)
ICML 2002
, pp. 123-130
-
-
Dzeroski, S.1
Zenko, B.2
-
6
-
-
0032117676
-
Using model trees for classification
-
Frank, E., Wang., Y., Inglis, S., Holmes, G., & Witten, I. H., 1998. Using model trees for classification. Machine Learning 32, 63-76.
-
(1998)
Machine Learning
, vol.32
, pp. 63-76
-
-
Frank, E.1
Wang, Y.2
Inglis, S.3
Holmes, G.4
Witten, I.H.5
-
7
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Freund, Y., Schapire, R., 1996. Experiments with a New Boosting Algorithm, Proceedings: ICML'96, p. 148-156.
-
(1996)
Proceedings: ICML'96
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.2
-
10
-
-
8344235939
-
Preventing student dropout in distance learning systems using machine learning techniques
-
Lecture Notes in Artificial Intelligence, Springer-Verlag
-
Kotsiantis, S., Pierrakeas, C., Pintelas, P., 2003. Preventing student dropout in distance learning systems using machine learning techniques, Proceedings of Seventh International Conference on Knowledge-Based Intelligent Information & Engineering Systems, Lecture Notes in Artificial Intelligence, Vol. 2774, Springer-Verlag, 267-274.
-
(2003)
Proceedings of Seventh International Conference on Knowledge-based Intelligent Information & Engineering Systems
, vol.2774
, pp. 267-274
-
-
Kotsiantis, S.1
Pierrakeas, C.2
Pintelas, P.3
-
12
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
Morgan Kaufmann
-
Opitz, D., Maclin, R., 1999. Popular Ensemble Methods: An Empirical Study, Artificial Intelligence Research 11,169-198, Morgan Kaufmann.
-
(1999)
Artificial Intelligence Research
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
14
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
Salzberg, S., 1997. On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, Data Mining and Knowledge Discovery 1, 317-328.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-328
-
-
Salzberg, S.1
-
15
-
-
0000245470
-
Selecting a classification method by cross-validation
-
Schaffer, C., 1993. Selecting a classification method by cross-validation. Machine Learning 13,135-143.
-
(1993)
Machine Learning
, vol.13
, pp. 135-143
-
-
Schaffer, C.1
-
16
-
-
0032280519
-
Boosting the margin: A new explana-tion for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S., 1998, Boosting the margin: A new explana-tion for the effectiveness of voting methods. The Annals of Statistics 26,1651-1686.
-
(1998)
The Annals of Statistics
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
17
-
-
8444243875
-
An evaluation of grading classifiers
-
Berlin, Springer
-
Seewald, A. K., Furnkranz, J., 2001. An evaluation of grading classifiers. In Advances in Intelligent Data Analysis: Proceedings of the Fourth International Symposium (IDA-01), pages 221-232, Berlin, Springer.
-
(2001)
Advances in Intelligent Data Analysis: Proceedings of the Fourth International Symposium (IDA-01)
, pp. 221-232
-
-
Seewald, A.K.1
Furnkranz, J.2
-
18
-
-
8444229122
-
How to make stacking better and faster while also taking care of an unknown weakness
-
Sammut C., Hoffmann A. (eds.), Morgan Kaufmann Publishers
-
Seewald, A.K, 2002. How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness, in Sammut C., Hoffmann A. (eds.), Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), Morgan Kaufmann Publishers, pp.554-561.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
, pp. 554-561
-
-
Seewald, A.K.1
-
19
-
-
0033343146
-
Issues in stacked generalization
-
Morgan Kaufmann
-
Ting, K., & Witten, I., 1999. Issues in Stacked Generalization, Artificial Intelligence Research 10, 271-289, Morgan Kaufmann.
-
(1999)
Artificial Intelligence Research
, vol.10
, pp. 271-289
-
-
Ting, K.1
Witten, I.2
-
21
-
-
0001717058
-
Induction of model trees for predicting continuous classes
-
Prague
-
Wang, Y., Witten, L, 1997, Induction of model trees for predicting continuous classes, In Proc. of the Poster Papers of the European Conference on ML, Prague, 128-137.
-
(1997)
Proc. of the Poster Papers of the European Conference on ML
, pp. 128-137
-
-
Wang, Y.1
Witten, L.2
-
22
-
-
0003957032
-
-
Morgan Kaufmann, San Mateo, 2000
-
Witten, I., Frank, E. (2000), Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Mateo, 2000.
-
(2000)
Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations
-
-
Witten, I.1
Frank, E.2
-
23
-
-
0026692226
-
Stacked Generalization
-
Wolpert, D., 1992, Stacked Generalization. Neural Networks 5, 241-260.
-
(1992)
Neural Networks
, vol.5
, pp. 241-260
-
-
Wolpert, D.1
|