-
1
-
-
0032856761
-
On domain knowledge and feature selection using a support vector machine
-
Barzilay, O., Brailovsky, V.L., 1999. On domain knowledge and feature selection using a support vector machine. Pattern Recognition Letters 20, 475-484.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 475-484
-
-
Barzilay, O.1
Brailovsky, V.L.2
-
2
-
-
0000876414
-
Local learning algorithm
-
Bottou, L., Vapnik, V., 1992. Local learning algorithm. Neural Computations 4 (6), 888-900.
-
(1992)
Neural Computations
, vol.4
, Issue.6
, pp. 888-900
-
-
Bottou, L.1
Vapnik, V.2
-
3
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
84899013173
-
Support vector regression machines
-
Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V., 1996. Support vector regression machines. In: NISP'96. See also http://svm.first.gmd.de.
-
(1996)
NISP'96
-
-
Drucker, H.1
Burges, C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
5
-
-
20444440880
-
Random field models in image analysis
-
Dubes, R.C., Jain, A.K., 1989. Random field models in image analysis. J. Appl. Statist. 16 (2).
-
(1989)
J. Appl. Statist.
, vol.16
, Issue.2
-
-
Dubes, R.C.1
Jain, A.K.2
-
7
-
-
0026966646
-
-
Proc. 5th Annual Workshop of Computational Learning Theory ACM, New York
-
Guyon, I., Boser, B.E., Vapnik, V., 1992. A training algorithm for optimal margin classifiers. In: Proc. 5th Annual Workshop of Computational Learning Theory. ACM, New York, pp. 144-152.
-
(1992)
A Training Algorithm for Optimal Margin Classifiers
, pp. 144-152
-
-
Guyon, I.1
Boser, B.E.2
Vapnik, V.3
-
8
-
-
0002714543
-
Making large-scale SVM learning practical
-
Christopher, B.S., Burges, J.C., Smola, A.J. (Eds.), MIT Press, Cambridge, USA
-
Joachims, T., 1998. Making large-scale SVM learning practical. In: Christopher, B.S., Burges, J.C., Smola, A.J. (Eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, USA.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
9
-
-
0032208093
-
Improving the k-NCN classification rule through heuristic modifications
-
Sánchez, J.S., Pla, F., Ferri, F.J., 1998. Improving the k-NCN classification rule through heuristic modifications. Pattern Recognition Letters 19, 1165-1170.
-
(1998)
Pattern Recognition Letters
, vol.19
, pp. 1165-1170
-
-
Sánchez, J.S.1
Pla, F.2
Ferri, F.J.3
-
10
-
-
84902142380
-
Incorporating invariances in support vector learning machines
-
von der Malsburg, von Seelen, W., Vortbruggen, J.C., Sendhoff, B. (Eds.), Artificial Neural Networks - ICANN'96 Berlin
-
Scholkoph, B., Burges, C., Vapnik, V., 1996a. Incorporating invariances in support vector learning machines. In: von der Malsburg, von Seelen, W., Vortbruggen, J.C., Sendhoff, B. (Eds.), Artificial Neural Networks - ICANN'96. Springer Lecture Notes in Computer Science, Vol. 1112, Berlin, pp. 47-52.
-
(1996)
Springer Lecture Notes in Computer Science
, vol.1112
, pp. 47-52
-
-
Scholkoph, B.1
Burges, C.2
Vapnik, V.3
-
11
-
-
0003836788
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Max-Plank-Institute for Biological Kybernetik, Technical Report No. 44
-
Scholkoph, B., Smola, A., Muller, K.-S., 1996b. Nonlinear component analysis as a kernel eigenvalue problem. Max-Plank-Institute for Biological Kybernetik, Technical Report No. 44 (see also Neural Computation 10, 1998 and http:// svm.first.gmd.de).
-
(1996)
Neural Computation
, vol.10
-
-
Scholkoph, B.1
Smola, A.2
Muller, K.-S.3
-
12
-
-
85031521014
-
Support vector methods in learning and feature extraction
-
Scholkoph, B., Smola, A., Muller, K.-S., Burges, C., Vapnik, V., 1998a. Support vector methods in learning and feature extraction. In: ACNN'98 Australian Cong. Neural Networks. See also http://svm.first.gmd.de.
-
(1998)
ACNN'98 Australian Cong. Neural Networks
-
-
Scholkoph, B.1
Smola, A.2
Muller, K.-S.3
Burges, C.4
Vapnik, V.5
-
13
-
-
51749084180
-
Prior knowledge in support vector kernels
-
Jordan, M., Kearns, M., Solla, S. (Eds.), MIT Press, Cambridge, MA
-
Scholkoph, B., Simard, P., Smola, A., Vapnik, V., 1998b. Prior knowledge in support vector kernels. In: Jordan, M., Kearns, M., Solla, S. (Eds.), Advances in Neural Information Processing Systems, Vol. 10. MIT Press, Cambridge, MA.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
-
-
Scholkoph, B.1
Simard, P.2
Smola, A.3
Vapnik, V.4
-
15
-
-
0003634015
-
Support vector method for function approximation, regression estimation and signal processing
-
Vapnik, V., Golowich, S., Smola, A., 1996. Support vector method for function approximation, regression estimation and signal processing. Proc. NISP'96. See also http:// svm.first.gmd.de.
-
(1996)
Proc. NISP'96
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
|