-
1
-
-
50549101751
-
Automatically countering imbalance and its empirical relationship to cost
-
Chawla, N.V., Cieslak, D.A., Hall, L.O., Joshi, A.: Automatically countering imbalance and its empirical relationship to cost. Data Mining and Knowledge Discovery 17(2), 225-252 (2008)
-
(2008)
Data Mining and Knowledge Discovery
, vol.17
, Issue.2
, pp. 225-252
-
-
Chawla, N.V.1
Cieslak, D.A.2
Hall, L.O.3
Joshi, A.4
-
2
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler, J., Roli, F. (eds.) MCS 2000. Springer, Heidelberg
-
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
-
(2000)
LNCS
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996) (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
9444297357
-
SMOTEBoost: Improving prediction of the minority class in boosting
-
Knowledge Discovery in Databases: PKDD 2003
-
Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: Smoteboost: improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107-119. Springer, Heidelberg (2003) (Pubitemid 37231089)
-
(2003)
Lecture Notes in Computer Science
, Issue.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
6
-
-
84878083672
-
Exploratory under-sampling for class-imbalance learning
-
DOI 10.1109/ICDM.2006.68, 4053136, Proceedings - Sixth International Conference on Data Mining, ICDM 2006
-
Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory under-sampling for class-imbalance learning. In: ICDM '06: Proceedings of the Sixth International Conference on Data Mining, Washington, DC, USA, pp. 965-969. IEEE Computer Society, Los Alamitos (2006) (Pubitemid 47485889)
-
(2007)
Proceedings - IEEE International Conference on Data Mining, ICDM
, pp. 965-969
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
7
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The databoost-im approach
-
ACM, New York
-
Guo, H., Viktor,H.L.: Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. In: SIGKDD Explorations, pp. 30-39. ACM, New York (2004)
-
(2004)
SIGKDD Explorations
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
9
-
-
37349031558
-
Exploiting diversity in ensembles: Improving the performance on unbalanced datasets
-
Multiple Classifier Systems - 7th International Workshop, MCS 2007, Proceedings
-
Chawla, N.V., Sylvester, J.: Exploiting diversity in ensembles: Improving the performance on unbalanced datasets. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 397-406. Springer, Heidelberg (2007) (Pubitemid 350284265)
-
(2007)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4472
, pp. 397-406
-
-
Chawla, N.V.1
Sylvester, J.2
-
10
-
-
56049126929
-
Learning decision trees for unbalanced data
-
Daelemans, W., et al. (eds.) ECML PKDD 2008, Part I. Springer, Heidelberg
-
Cieslak, D.A., Chawla, N.V.: Learning decision trees for unbalanced data. In: Daelemans, W., et al. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 241-256. Springer, Heidelberg (2008)
-
(2008)
LNCS (LNAI)
, vol.5211
, pp. 241-256
-
-
Cieslak, D.A.1
Chawla, N.V.2
-
14
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1-30 (2006) (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
15
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles. Machine Learning 51, 181-207 (2003)
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
16
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(19), 139-157 (2000)
-
(2000)
Machine Learning
, vol.40
, Issue.19
, pp. 139-157
-
-
Dietterich, T.G.1
-
19
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001) (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
20
-
-
52649160312
-
Roughly balanced bagging for imbalanced data
-
SIAM, Philadelphia
-
Hido, S., Kashima, H.: Roughly balanced bagging for imbalanced data. In: Statistical Analysis and Data Mining, pp. 143-152. SIAM, Philadelphia (2008)
-
(2008)
Statistical Analysis and Data Mining
, pp. 143-152
-
-
Hido, S.1
Kashima, H.2
-
22
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artifical Intelligent Research 19, 315-354 (2003) (Pubitemid 41525924)
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
23
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6, 20-29 (2004)
-
(2004)
SIGKDD Explorations
, vol.6
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
24
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321-357 (2002) (Pubitemid 43057176)
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
|