메뉴 건너뛰기




Volumn 44, Issue 2, 2012, Pages 99-108

Autophagy and bacterial infectious diseases

Author keywords

Autophagy; Cytokines; Immunity; Infection; Innate; Reactive oxygen species

Indexed keywords

ALPHA INTERFERON; BECLIN 1; BETA INTERFERON; CATHELICIDIN; GUANOSINE TRIPHOSPHATASE; INTERLEUKIN 10; INTERLEUKIN 12; INTERLEUKIN 17; INTERLEUKIN 23; INTERLEUKIN 27; INTERLEUKIN 6; PROTEIN P47; REACTIVE OXYGEN METABOLITE; STRESS ACTIVATED PROTEIN KINASE; TOLL LIKE RECEPTOR 4; TUMOR NECROSIS FACTOR ALPHA; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6;

EID: 84858016996     PISSN: 12263613     EISSN: 20926413     Source Type: Journal    
DOI: 10.3858/emm.2012.44.2.032     Document Type: Review
Times cited : (94)

References (85)
  • 1
    • 0031861480 scopus 로고    scopus 로고
    • Rickettsial pathogens and their arthropod vectors
    • Azad AF, Beard CB. Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis 1998;4:179-86
    • (1998) Emerg Infect Dis , vol.4 , pp. 179-186
    • Azad, A.F.1    Beard, C.B.2
  • 2
    • 60749108379 scopus 로고    scopus 로고
    • Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment
    • Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 2009; 11:777-90
    • (2009) Antioxid Redox Signal , vol.11 , pp. 777-790
    • Azad, M.B.1    Chen, Y.2    Gibson, S.B.3
  • 3
    • 33744958258 scopus 로고    scopus 로고
    • Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole
    • Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 2006;281:11374-83
    • (2006) J Biol Chem , vol.281 , pp. 11374-11383
    • Birmingham, C.L.1    Smith, A.C.2    Bakowski, M.A.3    Yoshimori, T.4    Brumell, J.H.5
  • 5
    • 65449115788 scopus 로고    scopus 로고
    • Targeting of immune signaling networks by bacterial pathogens
    • Brodsky IE, Medzhitov R. Targeting of immune signaling networks by bacterial pathogens. Nat Cell Biol 2009; 11:521-6
    • (2009) Nat Cell Biol , vol.11 , pp. 521-526
    • Brodsky, I.E.1    Medzhitov, R.2
  • 6
    • 69649098078 scopus 로고    scopus 로고
    • Autophagy in intracellular bacterial infection
    • Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. Biochim Biophys Acta 2009a;1793:1465-77
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 1465-1477
    • Campoy, E.1    Colombo, M.I.2
  • 8
    • 80053605687 scopus 로고    scopus 로고
    • Antimicrobial peptides important in innate immunity
    • Cederlund A, Gudmundsson GH, Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J 2011;278: 3942-51
    • (2011) FEBS J , vol.278 , pp. 3942-3951
    • Cederlund, A.1    Gudmundsson, G.H.2    Agerberth, B.3
  • 9
    • 79952348751 scopus 로고    scopus 로고
    • The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway
    • Cemma M, Kim PK, Brumell JH. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 2011;7:341-5
    • (2011) Autophagy , vol.7 , pp. 341-345
    • Cemma, M.1    Kim, P.K.2    Brumell, J.H.3
  • 11
    • 33749264796 scopus 로고    scopus 로고
    • Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication
    • Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 2006;103:14578-83
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 14578-14583
    • Checroun, C.1    Wehrly, T.D.2    Fischer, E.R.3    Hayes, S.F.4    Celli, J.5
  • 12
    • 1242306498 scopus 로고    scopus 로고
    • A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest
    • Chua J, Vergne I, Master S, Deretic V. A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr Opin Microbiol 2004;7:71-7
    • (2004) Curr Opin Microbiol , vol.7 , pp. 71-77
    • Chua, J.1    Vergne, I.2    Master, S.3    Deretic, V.4
  • 15
    • 79955110091 scopus 로고    scopus 로고
    • Role of innate cytokines in mycobacterial infection
    • Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol 2011; 4:252-60
    • (2011) Mucosal Immunol , vol.4 , pp. 252-260
    • Cooper, A.M.1    Mayer-Barber, K.D.2    Sher, A.3
  • 16
    • 0033853186 scopus 로고    scopus 로고
    • Actin-based motility of pathogens: The Arp2/3 complex is a central player
    • Cossart P. Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell Microbiol 2000;2:195-205
    • (2000) Cell Microbiol , vol.2 , pp. 195-205
    • Cossart, P.1
  • 17
    • 67549139899 scopus 로고    scopus 로고
    • Toll-like receptors in control of immunological autophagy
    • Delgado MA, Deretic V. Toll-like receptors in control of immunological autophagy. Cell Death Differ 2009;16: 976-83
    • (2009) Cell Death Differ , vol.16 , pp. 976-983
    • Delgado, M.A.1    Deretic, V.2
  • 18
    • 64049086218 scopus 로고    scopus 로고
    • Multiple regulatory and effector roles of autophagy in immunity
    • Deretic V. Multiple regulatory and effector roles of autophagy in immunity. Curr Opin Immunol 2009;21:53-62
    • (2009) Curr Opin Immunol , vol.21 , pp. 53-62
    • Deretic, V.1
  • 19
    • 77951256153 scopus 로고    scopus 로고
    • Autophagy in infection
    • Deretic V. Autophagy in infection. Curr Opin Immunol 2010; 22:252-62
    • (2010) Curr Opin Immunol , vol.22 , pp. 252-262
    • Deretic, V.1
  • 20
    • 79951910694 scopus 로고    scopus 로고
    • Autophagy in immunity and cell-autonomous defense against intracellular microbes
    • Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 2011; 240:92-104
    • (2011) Immunol Rev , vol.240 , pp. 92-104
    • Deretic, V.1
  • 21
    • 67649607465 scopus 로고    scopus 로고
    • Autophagy, immunity, and microbial adaptations
    • Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009;5:527-49
    • (2009) Cell Host Microbe , vol.5 , pp. 527-549
    • Deretic, V.1    Levine, B.2
  • 24
    • 33745847796 scopus 로고    scopus 로고
    • Mouse infection by Legionella, a model to analyze autophagy
    • Dubuisson JF, Swanson MS. Mouse infection by Legionella, a model to analyze autophagy. Autophagy 2006;2:179-82
    • (2006) Autophagy , vol.2 , pp. 179-182
    • Dubuisson, J.F.1    Swanson, M.S.2
  • 26
    • 77953792923 scopus 로고    scopus 로고
    • Mediatory molecules that fuse autophagosomes and lysosomes
    • Furuta N, Yoshimori T, Amano A. Mediatory molecules that fuse autophagosomes and lysosomes. Autophagy 2010; 6:417-8
    • (2010) Autophagy , vol.6 , pp. 417-418
    • Furuta, N.1    Yoshimori, T.2    Amano, A.3
  • 27
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004;119:753-66
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 30
    • 75649114258 scopus 로고    scopus 로고
    • Autophagy in immunity against intracellular bacteria
    • Huang J, Brumell JH. Autophagy in immunity against intracellular bacteria. Curr Top Microbiol Immunol 2009; 335:189-215
    • (2009) Curr Top Microbiol Immunol , vol.335 , pp. 189-215
    • Huang, J.1    Brumell, J.H.2
  • 31
    • 80052345448 scopus 로고    scopus 로고
    • A delicate dance: Host response to mycobacteria
    • Huynh KK, Joshi SA, Brown EJ. A delicate dance: host response to mycobacteria. Curr Opin Immunol 2011; 23:464-72
    • (2011) Curr Opin Immunol , vol.23 , pp. 464-472
    • Huynh, K.K.1    Joshi, S.A.2    Brown, E.J.3
  • 33
    • 77957119308 scopus 로고    scopus 로고
    • Innate immunity to mycobacteria: Vitamin D and autophagy
    • Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy. Cell Microbiol 2010;12:1026-35
    • (2010) Cell Microbiol , vol.12 , pp. 1026-1035
    • Jo, E.K.1
  • 34
    • 34047262879 scopus 로고    scopus 로고
    • Intracellular signaling cascades regulating innate immune responses to Mycobacteria: Branching out from Toll-like receptors
    • Jo EK, Yang CS, Choi CH, Harding CV. Intracellular signaling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 2007;9:1087-98
    • (2007) Cell Microbiol , vol.9 , pp. 1087-1098
    • Jo, E.K.1    Yang, C.S.2    Choi, C.H.3    Harding, C.V.4
  • 35
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011;7:279-96
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 36
    • 84858031520 scopus 로고    scopus 로고
    • Secrets of a successful pathogen: Legionella resistance to progression along the autophagic pathway
    • Joshi AD, Swanson MS. Secrets of a successful pathogen: Legionella resistance to progression along the autophagic pathway. Front Microbiol 2011;2:138
    • (2011) Front Microbiol , vol.2 , pp. 138
    • Joshi, A.D.1    Swanson, M.S.2
  • 37
    • 79955777383 scopus 로고    scopus 로고
    • A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection
    • Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science 2011;332:717-21
    • (2011) Science , vol.332 , pp. 717-721
    • Kim, B.H.1    Shenoy, A.R.2    Kumar, P.3    Das, R.4    Tiwari, S.5    Macmicking, J.D.6
  • 39
    • 65549142204 scopus 로고    scopus 로고
    • A role for ubiquitin in selective autophagy
    • Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol Cell 2009b;34:259-69
    • (2009) Mol Cell , vol.34 , pp. 259-269
    • Kirkin, V.1    McEwan, D.G.2    Novak, I.3    Dikic, I.4
  • 41
    • 77956410115 scopus 로고    scopus 로고
    • Selective autophagy: Ubiquitin-mediated recognition and beyond
    • Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 2010;12:836-41
    • (2010) Nat Cell Biol , vol.12 , pp. 836-841
    • Kraft, C.1    Peter, M.2    Hofmann, K.3
  • 42
    • 77649112187 scopus 로고    scopus 로고
    • Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis
    • Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 2010;140:731-43
    • (2010) Cell , vol.140 , pp. 731-743
    • Kumar, D.1    Nath, L.2    Kamal, M.A.3    Varshney, A.4    Jain, A.5    Singh, S.6    Rao, K.V.7
  • 44
    • 34548700796 scopus 로고    scopus 로고
    • Unveiling the roles of autophagy in innate and adaptive immunity
    • Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 2007;7:767-77
    • (2007) Nat Rev Immunol , vol.7 , pp. 767-777
    • Levine, B.1    Deretic, V.2
  • 45
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011;469:323-35
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 46
    • 33748444233 scopus 로고    scopus 로고
    • Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages
    • Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJ, Yap GS. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 2006;203:2063-71
    • (2006) J Exp Med , vol.203 , pp. 2063-2071
    • Ling, Y.M.1    Shaw, M.H.2    Ayala, C.3    Coppens, I.4    Taylor, G.A.5    Ferguson, D.J.6    Yap, G.S.7
  • 48
    • 80052285936 scopus 로고    scopus 로고
    • Similar structures but different roles - an updated perspective on TLR structures
    • Manavalan B, Basith S, Choi S. Similar structures but different roles - an updated perspective on TLR structures. Front Physiol 2011;2:41
    • (2011) Front Physiol , vol.2 , pp. 41
    • Manavalan, B.1    Basith, S.2    Choi, S.3
  • 49
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451:1069-75
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 54
    • 57649166494 scopus 로고    scopus 로고
    • Eating the enemy within: Autophagy in infectious diseases
    • Orvedahl A, Levine B. Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 2009;16:57-69
    • (2009) Cell Death Differ , vol.16 , pp. 57-69
    • Orvedahl, A.1    Levine, B.2
  • 57
    • 0021322401 scopus 로고
    • Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae
    • Rikihisa Y. Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat Rec 1984;208: 319-27
    • (1984) Anat Rec , vol.208 , pp. 319-327
    • Rikihisa, Y.1
  • 58
    • 77954590749 scopus 로고    scopus 로고
    • Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7
    • Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N, Shintani S, Hamada S, Ooshima T, Nakagawa I. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 2010;285:22666-75
    • (2010) J Biol Chem , vol.285 , pp. 22666-22675
    • Sakurai, A.1    Maruyama, F.2    Funao, J.3    Nozawa, T.4    Aikawa, C.5    Okahashi, N.6    Shintani, S.7    Hamada, S.8    Ooshima, T.9    Nakagawa, I.10
  • 59
    • 78650890352 scopus 로고    scopus 로고
    • Regulation of autophagy by ROS: Physiology and pathology
    • Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2011; 36:30-8
    • (2011) Trends Biochem Sci , vol.36 , pp. 30-38
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 60
    • 79551684983 scopus 로고    scopus 로고
    • Mechanisms and consequences of bacterial targeting by the autophagy pathway
    • Shahnazari S, Brumell JH. Mechanisms and consequences of bacterial targeting by the autophagy pathway. Curr Opin Microbiol 2011;14:68-75
    • (2011) Curr Opin Microbiol , vol.14 , pp. 68-75
    • Shahnazari, S.1    Brumell, J.H.2
  • 62
    • 57749100267 scopus 로고    scopus 로고
    • MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages
    • Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 2008;283: 33175-82
    • (2008) J Biol Chem , vol.283 , pp. 33175-33182
    • Shi, C.S.1    Kehrl, J.H.2
  • 63
    • 77953858790 scopus 로고    scopus 로고
    • TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
    • Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 2010;3:ra42
    • (2010) Sci Signal , vol.3 , pp. 42
    • Shi, C.S.1    Kehrl, J.H.2
  • 66
    • 0018538430 scopus 로고
    • In vitro studies of rickettsiahost cell interactions: Ultrastructural changes induced by Rickettsia rickettsii infection of chicken embryo fibroblasts
    • Silverman DJ, Wisseman CL, Jr. In vitro studies of rickettsiahost cell interactions: ultrastructural changes induced by Rickettsia rickettsii infection of chicken embryo fibroblasts. Infect Immun 1979;26:714-27
    • (1979) Infect Immun , vol.26 , pp. 714-727
    • Silverman, D.J.1    Wisseman, C.L.2
  • 67
    • 33748506089 scopus 로고    scopus 로고
    • Human IRGM induces autophagy to eliminate intracellular mycobacteria
    • Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006;313:1438-41
    • (2006) Science , vol.313 , pp. 1438-1441
    • Singh, S.B.1    Davis, A.S.2    Taylor, G.A.3    Deretic, V.4
  • 69
    • 16644392662 scopus 로고    scopus 로고
    • Mycobacterium marinum: The generalization and specialization of a pathogenic mycobacterium
    • Stamm LM, Brown EJ. Mycobacterium marinum: the generalization and specialization of a pathogenic mycobacterium. Microbes Infect 2004;6:1418-28
    • (2004) Microbes Infect , vol.6 , pp. 1418-1428
    • Stamm, L.M.1    Brown, E.J.2
  • 70
    • 77956180361 scopus 로고    scopus 로고
    • Autophagy and innate immunity: Triggering, targeting and tuning
    • Sumpter R Jr, Levine B. Autophagy and innate immunity: triggering, targeting and tuning. Semin Cell Dev Biol 2010; 21:699-711
    • (2010) Semin Cell Dev Biol , vol.21 , pp. 699-711
    • Sumpter Jr., R.1    Levine, B.2
  • 71
  • 72
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140:805-20
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 73
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston TL, Ryzhakov G, Bloor S, von MN, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215-21
    • (2009) Nat Immunol , vol.10 , pp. 1215-1221
    • Thurston, T.L.1    Ryzhakov, G.2    Bloor, S.3    Von, M.N.4    Randow, F.5
  • 74
    • 77953496542 scopus 로고    scopus 로고
    • NDP52, a novel autophagy receptor for ubiquitindecorated cytosolic bacteria
    • von Muhlinen N, Thurston T, Ryzhakov G, Bloor S, Randow F. NDP52, a novel autophagy receptor for ubiquitindecorated cytosolic bacteria. Autophagy 2010;6:288-9
    • (2010) Autophagy , vol.6 , pp. 288-289
    • von Muhlinen, N.1    Thurston, T.2    Ryzhakov, G.3    Bloor, S.4    Randow, F.5
  • 75
    • 34447137410 scopus 로고    scopus 로고
    • Rickettsiae and rickettsial infections: The current state of knowledge
    • Walker DH. Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis 2007;45 (Suppl 1):S39-44
    • (2007) Clin Infect Dis , vol.45 , Issue.SUPPL. 1
    • Walker, D.H.1
  • 76
    • 0031035350 scopus 로고    scopus 로고
    • Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells
    • Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM. Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest 1997;76:129-38
    • (1997) Lab Invest , vol.76 , pp. 129-138
    • Walker, D.H.1    Popov, V.L.2    Crocquet-Valdes, P.A.3    Welsh, C.J.4    Feng, H.M.5
  • 77
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvationinduced autophagy
    • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvationinduced autophagy. Mol Cell 2008;30:678-88
    • (2008) Mol Cell , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3    Bassik, M.4    Levine, B.5
  • 81
    • 65449128448 scopus 로고    scopus 로고
    • NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression
    • Yang CS, Shin DM, Kim KH, Lee ZW, Lee CH, Park SG, Bae YS, Jo EK. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol 2009; 182:3696-705
    • (2009) J Immunol , vol.182 , pp. 3696-3705
    • Yang, C.S.1    Shin, D.M.2    Kim, K.H.3    Lee, Z.W.4    Lee, C.H.5    Park, S.G.6    Bae, Y.S.7    Jo, E.K.8
  • 85


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.